1
AP EAPCET 2024 - 21th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If the ordinates of points $P$ and $Q$ on the parabola $y^2=12 x$ are in the ratio $1: 2$. Then, the locus of the point of intersection of the normals to the parabola at $P$ and $Q$ is
A
$y+18\left(\frac{x-6}{21}\right)^{\frac{3}{2}}=0$
B
$y-18\left(\frac{x-6}{12}\right)^{\frac{3}{2}}=0$
C
$y+12\left(\frac{x-6}{14}\right)^{\frac{1}{2}}=0$
D
$y-12\left(\frac{x-6}{18}\right)^{\frac{1}{2}}=0$
2
AP EAPCET 2024 - 20th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
A common tangent to the circle $x^2+y^2=9$ and parabola $y^2=8 x$ is
A
$3 x-\sqrt{3 y}+2=0$
B
$x-\sqrt{3} y+6=0$
C
$2 x-\sqrt{3} y+3=0$
D
$x-3 y+6=0$
3
AP EAPCET 2024 - 19th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
The normal drawn at a point $(2,-4)$ on the parabola $y^2 \pm 8 x$ cuts again the same parabola at $(\alpha, \beta)$, then $\alpha+\beta=$
A
8
B
16
C
24
D
30
4
AP EAPCET 2024 - 18th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If the axes are rotated through an angle $45^{\circ}$ about the origin in anticlockwise direction, then the transformed equation of $y^2=4 a r$ is
A
$(x+y)^2=4 \sqrt{2} a(x-y)$
B
$(x-y)^2=4 \sqrt{2} a(x+y)$
C
$(x-y)^2=\frac{43}{\sqrt{2}}(x-y)$
D
$(x+y)^2=\frac{4 a}{\sqrt{2}}(x-y)$
AP EAPCET Subjects
EXAM MAP