1
AP EAPCET 2024 - 21th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $\mathbf{a}=\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}, \mathbf{b}=\hat{\mathbf{i}}+\hat{\mathbf{j}}-2 \hat{\mathbf{k}}, \mathbf{c}=2 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}-\hat{\mathbf{k}}$. $\mathbf{d}=2 \hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}$ are four vector, then $(\mathbf{a} \times \mathbf{c}) \times(\mathbf{b} \times \mathbf{d})=$
A
$2 \hat{\mathbf{i}}+19 \hat{\mathbf{j}}-11 \hat{\mathbf{k}}$
B
$-8 \hat{\mathbf{i}}+19 \hat{\mathbf{j}}-29 \hat{\mathbf{k}}$
C
$2 \mathbf{i}+\mathbf{j}-11 \mathbf{k}$
D
$-8 \hat{\mathbf{i}}+\hat{\mathbf{j}}-29 \hat{\mathbf{k}}$
2
AP EAPCET 2024 - 20th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
The angle between the diagonals of the parallelogram whose adjacent sides are $2 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}-5 \hat{\mathbf{k}}, \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}$ is
A
$\cos ^{-1}\left(\frac{7}{\sqrt{69}}\right)$
B
$\cos ^{-1}\left(\frac{1}{7 \sqrt{69}}\right)$
C
$\cos ^{-1}\left(\frac{1}{7}\right)$
D
$\cos ^{-1}\left(\frac{31}{7 \sqrt{69}}\right)$
3
AP EAPCET 2024 - 20th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If the points having the position vectors $-i+4 j-4 k_{\text {, }}$, $3 i+2 j-5 k,-3 i+8 j-5 k$ and $-3 i+2 j+\lambda k$ are coplanar, then $\lambda=$
A
1
B
2
C
-2
D
-3
4
AP EAPCET 2024 - 20th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If $|f|=10,|g|=14$ and $|f-g|=15$, then $|f+g|=$
A
367
B
$\sqrt{367}$
C
400
D
20
AP EAPCET Subjects
EXAM MAP