1
AP EAPCET 2024 - 18th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $f(x)=\left\{\begin{array}{cl}\frac{2 x e^{1 / 2 x}-3 x e^{-1 / 2 x}}{e^{1 / 2 x}+4 e^{-1 / 2 x}} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{array}\right.$ is a real valued function, then
A
$f^{\prime}\left(0^{\prime}\right)=\frac{-3}{4}$
B
$f^{\prime}\left(0^{-}\right)=2$
C
$f$ is not differentiable at $x=0$
D
$f$ is differentiable at $x=0$
2
AP EAPCET 2022 - 5th July Morning Shift
MCQ (Single Correct Answer)
+1
-0

$$\lim _\limits{x \rightarrow-\infty} \log _e(\cosh x)+x=$$

A
$$\log 2$$
B
$$-\log 2$$
C
$$\log \left(\frac{1}{2}\right)+2$$
D
$$\log \left(\frac{1}{2}\right)-2$$
3
AP EAPCET 2022 - 5th July Morning Shift
MCQ (Single Correct Answer)
+1
-0

If $$a, b$$ and $$c$$ are three distinct real numbers and $$\lim _\limits{x \rightarrow \infty} \frac{(b-c) x^2+(c-a) x+(a-b)}{(a-b) x^2+(b-c) x+(c-a)}=\frac{1}{2}$$, then $$a+2 c=$$

A
b
B
2b
C
3b
D
4b
4
AP EAPCET 2022 - 5th July Morning Shift
MCQ (Single Correct Answer)
+1
-0

$$\lim _\limits{x \rightarrow-\infty} \frac{3|x|-x}{|x|-2 x}-\lim _\limits{x \rightarrow 0} \frac{\log \left(1+x^3\right)}{\sin ^3 x}=$$

A
$$\frac{1}{3}$$
B
$$-\frac{1}{4}$$
C
2
D
$$-\frac{5}{3}$$
AP EAPCET Subjects
EXAM MAP