1
AP EAPCET 2024 - 20th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If $A=\left[a_{i j}\right], 1 \leq i, j \leq n$ with $n \geq 2$ and $a_{i j}=i+j$ is a matrix, then the rank of $A$ is
A
0
B
1
C
2
D
4
2
AP EAPCET 2024 - 20th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
$$ \text { If } A=\left[\begin{array}{lll} 1 & 0 & 2 \\ 2 & 1 & 3 \\ 3 & 2 & 4 \end{array}\right] \text {, then } A^2-5 A+6 I= $$
A
$\left[\begin{array}{ccc}8 & 4 & 0 \\ 3 & 8 & 4 \\ 4 & 0 & 12\end{array}\right]$
B
$\left[\begin{array}{ccc}8 & 4 & 0 \\ 3 & 6 & 4 \\ 4 & 0 & 14\end{array}\right]$
C
$\left[\begin{array}{ccc}8 & 6 & 0 \\ 3 & 8 & 4 \\ 2 & 0 & 14\end{array}\right]$
D
$\left[\begin{array}{ccc}8 & 4 & 0 \\ 3 & 8 & 4 \\ 4 & 0 & 14\end{array}\right]$
3
AP EAPCET 2024 - 20th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
Sum of the positive roots of the equation $$ \left|\begin{array}{ccc} x^2+2 x & x+2 & 1 \\ 2 x+1 & x-1 & 1 \\ x+2 & -1 & 1 \end{array}\right|=0 \text { is } $$
A
$\frac{1+\sqrt{13}}{2}$
B
1
C
$\frac{\sqrt{13}-1}{2}$
D
3
4
AP EAPCET 2024 - 20th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If the solution of the system of simultaneous linear equations $x+y-z=6,3 x+2 y-z=5$ and $2 x-y-2 z+3=0$ is $x=\alpha, y=\beta, z=y$, then $\alpha+\beta=$
A
-7
B
2
C
1
D
-2
AP EAPCET Subjects
EXAM MAP