1
AP EAPCET 2024 - 23th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
A unit vector perpendicular to the vectors $a=2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}$ and $\mathbf{b}=3 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}$ is
A
$\frac{3 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}-2 \hat{\mathbf{k}}}{\sqrt{22}}$
B
$\frac{3 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}-3 \hat{\mathbf{k}}}{\sqrt{22}}$
C
$\frac{3 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}}{\sqrt{22}}$
D
$\frac{3 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}}{\sqrt{22}}$
2
AP EAPCET 2024 - 22th May Evening Shift
MCQ (Single Correct Answer)
+1
-0

If the vectors $a \hat{\mathbf{i}}+\mathbf{j}+3 \hat{\mathbf{k}}, 4 \hat{\mathbf{i}}+5 \hat{\mathbf{j}}+\hat{\mathbf{k}}$ and $4 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+6 \hat{\mathbf{k}}$ are coplanar, then $a$ is equal to

A
2
B
1
C
3
D
4
3
AP EAPCET 2024 - 22th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
Let $|\hat{\mathbf{a}}|=2=|\hat{\mathbf{b}}|=3$ and the angle between $\hat{\mathbf{a}}$ and $\hat{\mathbf{b}}$ be $\frac{\pi}{3}$. If a parallelogram is constructed with adjacent sides $2 \hat{\mathbf{a}}+3 \hat{\mathbf{b}}$ and $\hat{\mathbf{a}}-\hat{\mathbf{b}}$, then its shorter diagonal is of length
A
108
B
172
C
$6 \sqrt{3}$
D
$2 \sqrt{43}$
4
AP EAPCET 2024 - 22th May Evening Shift
MCQ (Single Correct Answer)
+1
-0

The values of $x$ for which the angle between the vectors $x^2 \hat{\mathbf{i}}+2 x \hat{\mathbf{j}}+\hat{\mathbf{k}}$ and $\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+x \hat{\mathbf{k}}$ is obtuse lie in the interval

A
$(-\infty, 0) \cup(3, \infty)$
B
$(0,3)$
C
$[0,3]$
D
$(-\infty, 0) \cup 3, \infty)$
AP EAPCET Subjects
EXAM MAP