1
GATE CE 2014 Set 1
MCQ (Single Correct Answer)
+1
-0.3
With reference to the conventional Cartesian $$(x,y)$$ coordinate system, the vertices of a triangle have the following coordinates: $$\,\left( {{x_1},{y_1}} \right) = \left( {1,0} \right);\,\,\,\left( {{x_2},{y_2}} \right) = \left( {2,2} \right);\,\,\,$$ and $$\,\left( {{x_3},{y_3}} \right) = \left( {4,3} \right).$$ The area of the triangle is equal to
A
$${3 \over 2}$$
B
$${3 \over 4}$$
C
$${4 \over 5}$$
D
$${5 \over 2}$$
2
GATE CE 2013
MCQ (Single Correct Answer)
+1
-0.3
The solution $$\int\limits_0^{\pi /4} {{{\cos }^4}3\theta {{\sin }^3}\,6\theta d\theta \,\,} $$ is :
A
$$0$$
B
$${1 \over {15}}$$
C
$$1$$
D
$${8 \over 3}$$
3
GATE CE 2012
MCQ (Single Correct Answer)
+1
-0.3
The infinite series $$1 + x + {{{x^2}} \over {2!}} + {{{x^3}} \over {3!}} + {{{x^4}} \over {4!}} + ........$$ corresponds to
A
$$sec\,x$$
B
$${e^x}$$
C
$$cos\,x$$
D
$$1 + si{n^2}x$$
4
GATE CE 2011
MCQ (Single Correct Answer)
+1
-0.3
What should be the value of $$\lambda $$ such that the function defined below is continuous at $$x = {\pi \over 2}$$?
$$f\left( x \right) = \left\{ {\matrix{ {{{\lambda \,\cos x} \over {{\pi \over 2} - x}},} & {if\,\,x \ne {\pi \over 2}} \cr {1\,\,\,\,\,\,\,\,\,\,,} & {if\,\,x = {\pi \over 2}} \cr } } \right.$$
A
$$0$$
B
$${2\pi }$$
C
$$1$$
D
$${{\pi \over 2}}$$
GATE CE Subjects
EXAM MAP