1
GATE CE 2014 Set 1
Numerical
+2
-0
The probability density function of evaporation $$E$$ on any day during a year in a watershed is given by $$f\left( E \right) = \left\{ {\matrix{ {{1 \over 5}} & {0 \le E \le 5\,mm/day} \cr 0 & {otherwise} \cr } } \right.$$\$
The probability that $$E$$ lies in between $$2$$ and $$4$$ $$mm/day$$ in the watershed is (in decimal) _______.
2
GATE CE 2014 Set 1
Numerical
+2
-0
A traffic office imposes on an average $$5$$ number of penalties daily on traffic violators. Assume that the number of penalties on different days is independent and follows a Poisson distribution. The probability that there will be less than $$4$$ penalties in a day is ________.
3
GATE CE 2014 Set 2
Numerical
+2
-0
An observer counts $$240$$veh/h at a specific highway location. Assume that the vehicle arrival at the location is Poisson distributed, the probability of having one vehicle arriving over a $$30$$-second time interval is _______.
4
GATE CE 2014 Set 2
+2
-0.6
If $$\left\{ x \right\}$$ is a continuous, real valued random variable defined over the interval $$\left( { - \infty ,\,\, \pm \infty } \right)$$ and its occurrence is defined by the density function given as: $$f\left( x \right) = {1 \over {\sqrt {2\pi * b} }}{e^{ - {1 \over 2}{{\left( {{{x - a} \over b}} \right)}^2}}}$$ where $$'a'$$ and $$'b'$$ are the statistical attributes of the random variable $$\left\{ x \right\}$$. The value of the integral $$\int\limits_{ - \infty }^a {{1 \over {\sqrt {2\pi * b} }}{e^{ - {1 \over 2}{{\left( {{{x - a} \over b}} \right)}^2}}}} dx\,\,\,$$ is
A
$$1$$
B
$$0.5$$
C
$$\pi$$
D
$${\pi \over 2}$$
GATE CE Subjects
Engineering Mechanics
Construction Material and Management
Geotechnical Engineering
Fluid Mechanics and Hydraulic Machines
Geomatics Engineering Or Surveying
Environmental Engineering
Transportation Engineering
General Aptitude
EXAM MAP
Medical
NEET