1
GATE CE 2017 Set 2
Numerical
+1
-0
The divergence of the vector field $$\,V = {x^2}i + 2{y^3}j + {z^4}k\,\,$$ at $$x=1, y=2, z=3$$ is ________.
2
GATE CE 2012
+1
-0.3
For the parallelogram $$OPQR$$ shown in the sketch. $$\,\overrightarrow {OP} = a\widehat i + b\widehat j$$ and $$\,\overrightarrow {OR} = c\widehat i + d\widehat j.\,\,$$ The area of the parallelogram is
A
$$ad-bc$$
B
$$ac+bd$$
C
$$ad+bc$$
D
$$ab-cd$$
3
GATE CE 2011
+1
-0.3
If $$\overrightarrow a$$ and $$\overrightarrow b$$ are two arbitrary vectors with magnitudes $$a$$ and $$b$$ respectively, $${\left| {\overrightarrow a \times \overrightarrow b } \right|^2}$$ will be equal to
A
$${a^2}\,{b^2} - {\left( {\overrightarrow a .\,\overrightarrow b } \right)^2}$$
B
$$ab - \overrightarrow a .\,\overrightarrow b$$
C
$${a^2}\,{b^2} + {\left( {\overrightarrow a .\,\overrightarrow b } \right)^2}$$
D
$$ab + \overrightarrow a .\,\overrightarrow b$$
4
GATE CE 2009
+1
-0.3
For a scalar function $$f(x,y,z)=$$ $${x^2} + 3{y^2} + 2{z^2},\,\,$$ the gradient at the point $$P(1,2,-1)$$ is
A
$$2\widehat i + 6\widehat j + 4\widehat k$$
B
$$2\widehat i + 12\widehat j - 4\widehat k$$
C
$$2\widehat i + 12\widehat j + 4\widehat k$$
D
$$\sqrt {56}$$
GATE CE Subjects
Engineering Mechanics
Construction Material and Management
Geotechnical Engineering
Fluid Mechanics and Hydraulic Machines
Geomatics Engineering Or Surveying
Environmental Engineering
Transportation Engineering
General Aptitude
EXAM MAP
Medical
NEET