1
GATE CE 2022 Set 1
MCQ (Single Correct Answer)
+1
-0.33

For the equation

$${{{d^3}y} \over {d{x^3}}} + x{\left( {{{dy} \over {dx}}} \right)^{3/2}} + {x^2}y = 0$$

the correct description is

A
an ordinary differential equation of order 3 and degree 2.
B
an ordinary differential equation of order 3 and degree 3.
C
an ordinary differential equation of order 2 and degree 3.
D
an ordinary differential equation of order 3 and degree 3/2.
2
GATE CE 2017 Set 1
MCQ (Single Correct Answer)
+1
-0.3
The solution of the equation $$\,{{dQ} \over {dt}} + Q = 1$$ with $$Q=0$$ at $$t=0$$ is
A
$$Q\left( t \right) = {e^{ - t}} - 1$$
B
$$\,Q\left( t \right) = 1 + {e^{ - t}}$$
C
$$Q\left( t \right) = 1 - {e^t}$$
D
$$Q\left( t \right) = 1 - {e^{ - t}}$$
3
GATE CE 2017 Set 1
MCQ (Single Correct Answer)
+1
-0.3
Consider the following second $$-$$order differential equation : $$\,y''\,\, - 4y' + 3y = 2t - 3{t^2}\,\,\,$$
The particular solution of the differential equation is
A
$$ - 2 - 2t - {t^2}$$
B
$$ - 2t - {t^2}$$
C
$$2t - 3{t^2}$$
D
$$ - 2 - 2t - 3{t^2}$$
4
GATE CE 2017 Set 1
Numerical
+1
-0
Consider the following partial differential equation: $$\,\,3{{{\partial ^2}\phi } \over {\partial {x^2}}} + B{{{\partial ^2}\phi } \over {\partial x\partial y}} + 3{{{\partial ^2}\phi } \over {\partial {y^2}}} + 4\phi = 0\,\,$$ For this equation to be classified as parabolic, the value of $${B^2}$$ must be ____________.
Your input ____
GATE CE Subjects
EXAM MAP