1
GATE CE 1999
+1
-0.3
If $$c$$ is a constant, then the solution of $${{dy} \over {dx}} = 1 + {y^2}$$ is
A
$$y=sin(x+c)$$
B
$$y=cos(x+c)$$
C
$$y=tan(x+c)$$
D
$$y = {e^x} + c$$
2
GATE CE 1997
+1
-0.3
For the differential equation $$f\left( {x,y} \right){{dy} \over {dx}} + g\left( {x,y} \right) = 0\,\,$$ to be exact is
A
$$\,{{\partial f} \over {\partial y}} = {{\partial g} \over {\partial x}}$$
B
$${{\partial f} \over {\partial x}} = {{\partial g} \over {\partial y}}$$
C
$$f=g$$
D
$${{{\partial ^2}f} \over {\partial {x^2}}} = {{{\partial ^2}g} \over {\partial {y^2}}}$$
3
GATE CE 1995
+1
-0.3
The differential equation $${y^{11}} + {\left( {{x^3}\,\sin x} \right)^5}{y^1} + y = \cos {x^3}\,\,\,\,$$ is
A
homogeneous
B
non-linear
C
$$2$$nd order linear
D
non-homogeneous with constant coefficients
4
GATE CE 1994
+1
-0.3
The necessary & sufficient condition for the differential equation of the form $$\,\,M\left( {x,y} \right)dx + N\left( {x,y} \right)dy = 0\,\,$$ to be exact is
A
$$M=N$$
B
$${{\partial M} \over {\partial x}} = {{\partial N} \over {\partial y}}$$
C
$${{\partial M} \over {\partial y}} = {{\partial N} \over {\partial x}}$$
D
$${{{\partial ^2}M} \over {\partial {x^2}}} = {{{\partial ^2}N} \over {\partial {y^2}}}$$
GATE CE Subjects
Construction Material and Management
Geomatics Engineering Or Surveying
Engineering Mechanics
Transportation Engineering
Strength of Materials Or Solid Mechanics
Reinforced Cement Concrete
Steel Structures
Irrigation
Environmental Engineering
Engineering Mathematics
Structural Analysis
Geotechnical Engineering
Fluid Mechanics and Hydraulic Machines
General Aptitude
EXAM MAP
Joint Entrance Examination