1
GATE CE 1999
+1
-0.3
If $$c$$ is a constant, then the solution of $${{dy} \over {dx}} = 1 + {y^2}$$ is
A
$$y=sin(x+c)$$
B
$$y=cos(x+c)$$
C
$$y=tan(x+c)$$
D
$$y = {e^x} + c$$
2
GATE CE 1997
+1
-0.3
For the differential equation $$f\left( {x,y} \right){{dy} \over {dx}} + g\left( {x,y} \right) = 0\,\,$$ to be exact is
A
$$\,{{\partial f} \over {\partial y}} = {{\partial g} \over {\partial x}}$$
B
$${{\partial f} \over {\partial x}} = {{\partial g} \over {\partial y}}$$
C
$$f=g$$
D
$${{{\partial ^2}f} \over {\partial {x^2}}} = {{{\partial ^2}g} \over {\partial {y^2}}}$$
3
GATE CE 1995
+1
-0.3
The differential equation $${y^{11}} + {\left( {{x^3}\,\sin x} \right)^5}{y^1} + y = \cos {x^3}\,\,\,\,$$ is
A
homogeneous
B
non-linear
C
$$2$$nd order linear
D
non-homogeneous with constant coefficients
4
GATE CE 1994
+1
-0.3
The necessary & sufficient condition for the differential equation of the form $$\,\,M\left( {x,y} \right)dx + N\left( {x,y} \right)dy = 0\,\,$$ to be exact is
A
$$M=N$$
B
$${{\partial M} \over {\partial x}} = {{\partial N} \over {\partial y}}$$
C
$${{\partial M} \over {\partial y}} = {{\partial N} \over {\partial x}}$$
D
$${{{\partial ^2}M} \over {\partial {x^2}}} = {{{\partial ^2}N} \over {\partial {y^2}}}$$
GATE CE Subjects
Engineering Mechanics
Construction Material and Management
Geotechnical Engineering
Fluid Mechanics and Hydraulic Machines
Geomatics Engineering Or Surveying
Environmental Engineering
Transportation Engineering
General Aptitude
EXAM MAP
Medical
NEET
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
CBSE
Class 12