1
GATE CE 2024 Set 1
MCQ (Single Correct Answer)
+2
-0.833

A vector field $\vec{p}$ and a scalar field $r$ are given by:

$\vec{p} = (2x^2 - 3xy + z^2) \hat{i} + (2y^2 - 3yz + x^2) \hat{j} + (2z^2 - 3xz + x^2) \hat{k}$

$r = 6x^2 + 4y^2 - z^2 - 9xyz - 2xy + 3xz - yz$

Consider the statements P and Q:

P: Curl of the gradient of the scalar field $r$ is a null vector.

Q: Divergence of curl of the vector field $\vec{p}$ is zero.

Which one of the following options is CORRECT?

A

Both P and Q are FALSE

B

P is TRUE and Q is FALSE

C

P is FALSE and Q is TRUE

D

Both P and Q are TRUE

2
GATE CE 2015 Set 1
Numerical
+2
-0
The directional derivative of the field $$u(x, y, z)=$$ $${x^2} - 3yz$$ in the direction of the vector $$\left( {\widehat i + \widehat j - 2\widehat k} \right)\,\,$$ at point $$(2, -1, 4)$$ is _______.
Your input ____
3
GATE CE 2014 Set 1
Numerical
+2
-0
A particle moves along a curve whose parametric equations are: $$\,x = {t^3} + 2t,\,y = - 3{e^{ - 2t}}\,\,$$ and $$z=2$$ $$sin$$ $$(5t),$$ where $$x, y$$ and $$z$$ show variations of the distance covered by the particle (in cm) with time $$t $$ (in $$s$$). The magnitude of the acceleration of the particle (in cm/s2) at $$t=0$$ is _______.
Your input ____
4
GATE CE 2009
MCQ (Single Correct Answer)
+2
-0.6
For a scalar function $$\,f\left( {x,y,z} \right) = {x^2} + 3{y^2} + 2{z^2},\,\,$$ the directional derivative at the point $$P(1,2,-1)$$ in the direction of a vector $$\widehat i - \widehat j + 2\widehat k\,\,$$ is
A
$$-18$$
B
$$-3\sqrt 6 $$
C
$$3\sqrt 6 $$
D
$$18$$
GATE CE Subjects
EXAM MAP