1
GATE CE 2017 Set 1
Numerical
+1
-0
$$\mathop {Lim}\limits_{x \to 0} \left( {{{\tan x} \over {{x^2} - x}}} \right)$$ is equal to _________.
Your input ____
2
GATE CE 2017 Set 1
MCQ (Single Correct Answer)
+1
-0.3
Let $$x$$ be a continuous variable defined over the interval $$\left( { - \infty ,\infty } \right)$$, and $$f\left( x \right) = {e^{ - x - {e^{ - x}}}}.$$
The integral $$g\left( x \right) = \int {f\left( x \right)dx\,\,} $$ is equal to
A
$${e^{e - x}}$$
B
$${e^{ - {e^{ - x}}}}$$
C
$${e^{ - {e^x}}}$$
D
$${e^{ - x}}$$
3
GATE CE 2017 Set 2
MCQ (Single Correct Answer)
+1
-0.3
Let $$\,\,W = f\left( {x,y} \right),\,\,$$ where $$x$$ and $$y$$ are functions of $$t.$$ Then, according to the chain rule, $${{dw} \over {dt}}$$ is equal to
A
$${{dw} \over {dx}}{{dx} \over {dt}} + {{dw} \over {dy}}{{dt} \over {dt}}$$
B
$${{\partial w} \over {\partial x}}{{\partial x} \over {\partial t}} + {{\partial w} \over {\partial y}}{{\partial y} \over {\partial t}}$$
C
$${{\partial w} \over {\partial x}}{{dx} \over {dt}} + {{\partial w} \over {\partial y}}{{dy} \over {dt}}$$
D
$${{dw} \over {dx}}{{\partial x} \over {\partial t}} + {{dw} \over {dy}}{{\partial y} \over {\partial t}}$$
4
GATE CE 2015 Set 2
MCQ (Single Correct Answer)
+1
-0.3
$$\mathop {\lim }\limits_{x \to \infty } {\left( {1 + {1 \over x}} \right)^{2x}}\,\,$$ is equal to
A
$${e^{ - 2}}$$
B
$$e$$
C
$$1$$
D
$${e^2}$$
GATE CE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12