1
GATE CE 2011
MCQ (Single Correct Answer)
+2
-0.6
If $$F\left( s \right) = L\left\{ {f\left( t \right)} \right\} = {{2\left( {s + 1} \right)} \over {{s^2} + 4s + 7}}$$ then the initial and final values of $$f(t)$$ are respectively
A
$$0,2$$ $$0,{2 \over 7}$$
B
$$2,0$$
C
$$0,{2 \over 7}$$
D
$${2 \over 7},\,0$$
2
GATE CE 2005
MCQ (Single Correct Answer)
+2
-0.6
Laplace transform of $$f\left( t \right) = \cos \left( {pt + q} \right)$$ is
A
$${{s\,\cos \,q - p\,\sin \,q} \over {{s^2} + {p^2}}}$$
B
$${{s\,\cos \,q - p\,\sin \,q} \over {{s^2} + {p^2}}}$$
C
$${{s\,\sin \,q - p\,\cos \,q} \over {{s^2} + {p^2}}}$$
D
$${{s\,\sin \,q + p\,\cos \,q} \over {{s^2} + {p^2}}}$$
3
GATE CE 2002
MCQ (Single Correct Answer)
+2
-0.6
The Laplace transform of the following function is $$$f\left( t \right) = \left\{ {\matrix{ {\sin t} & {for\,\,0 \le t \le \pi } \cr 0 & {for\,\,t > \pi } \cr } } \right.$$$
A
$$1/\left( {1 + {s^2}} \right)\,$$ for all $$\,s > 0$$
B
$$1/\left( {1 + {s^2}} \right)\,$$ for all $$\,s < \pi $$
C
$$\left( {1 + {e^{ - \pi s}}} \right)/\left( {1 + {s^2}} \right)$$ for all $$s>0$$
D
$${e^{ - \pi s}}/\left( {1 + {s^2}} \right)$$ for all $$s > 0$$
4
GATE CE 2002
Subjective
+2
-0
Using Laplace transforms, solve $${a \over {{s^2} - {a^2}}}\,\,\left( {{d^2}y/d{t^2}} \right) + 4y = 12t\,\,$$
given that $$y=0$$ and $$dy/dt=9$$ at $$t=0$$
GATE CE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12