1
GATE CE 2007
MCQ (Single Correct Answer)
+1
-0.3
A body originally at $${60^ \circ }$$ cools down to $$40$$ in $$15$$ minutes when kept in air at a temperature of $${25^ \circ }$$c. What will be the temperature of the body at the and of $$30$$ minutes?
A
$${35.2^ \circ }C$$
B
$${31.5^ \circ }C$$
C
$${28.7^ \circ }C$$
D
$${15^ \circ }C$$
2
GATE CE 2006
MCQ (Single Correct Answer)
+1
-0.3
The solution of the differential equation $$\,{x^2}{{dy} \over {dx}} + 2xy - x + 1 = 0\,\,\,$$ given that at $$x=1,$$ $$y=0$$ is
A
$$\,{1 \over 2} - {1 \over x} + {1 \over {2{x^2}}}$$
B
$$\,{1 \over 2} - {1 \over x} - {1 \over {2{x^2}}}$$
C
$${1 \over 2} + {1 \over x} + {1 \over {2{x^2}}}$$
D
$$ - {1 \over 2} + {1 \over x} + {1 \over {2{x^2}}}$$
3
GATE CE 2001
MCQ (Single Correct Answer)
+1
-0.3
The number of boundary conditions required to solve the differential equation $$\,\,{{{\partial ^2}\phi } \over {\partial {x^2}}} + {{{\partial ^2}\phi } \over {\partial {y^2}}} = 0\,\,$$ is
A
$$2$$
B
$$0$$
C
$$4$$
D
$$1$$
4
GATE CE 1999
MCQ (Single Correct Answer)
+1
-0.3
If $$c$$ is a constant, then the solution of $${{dy} \over {dx}} = 1 + {y^2}$$ is
A
$$y=sin(x+c)$$
B
$$y=cos(x+c)$$
C
$$y=tan(x+c)$$
D
$$y = {e^x} + c$$
GATE CE Subjects
EXAM MAP