1
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Equation of the plane containing the straight line $\frac{x}{2}=\frac{y}{3}=\frac{z}{4}$ and perpendicular to the plane containing the straight lines $\frac{x}{3}=\frac{y}{4}=\frac{z}{2}$ and $\frac{x}{4}=\frac{y}{2}=\frac{z}{3}$ is

A
$x+2 y-2 z=0$
B
$3 x+2 y-2 z=0$
C
$x-2 y+z=0$
D
$5 x+2 y-4 z=0$
2
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The new switching circuit for the following circuit by simplifying the given circuit is

MHT CET 2024 3rd May Evening Shift Mathematics - Mathematical Reasoning Question 52 English

A
MHT CET 2024 3rd May Evening Shift Mathematics - Mathematical Reasoning Question 52 English Option 1
B
MHT CET 2024 3rd May Evening Shift Mathematics - Mathematical Reasoning Question 52 English Option 2
C
MHT CET 2024 3rd May Evening Shift Mathematics - Mathematical Reasoning Question 52 English Option 3
D
MHT CET 2024 3rd May Evening Shift Mathematics - Mathematical Reasoning Question 52 English Option 4
3
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The minimum value of the function $\mathrm{f}(x)=2 x^3-15 x^2+36 x-48$ on the set $\mathrm{A}=\left\{x \mid x^2+20 \leqslant 9 x\right\}$ is

A
$-$16
B
$-$7
C
16
D
7
4
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

For each $x \in \mathbb{R}$, Let $[x]$ represent greatest integer function, then $\lim _{x \rightarrow 0^{-}} \frac{x([x]+|x|) \sin [x]}{|x|}$ is equal to

A
0
B
1
C
$\sin 1$
D
$-\sin 1$
MHT CET Papers
EXAM MAP