1
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

For the probability distribution

$\mathrm{X:}$ $-2$ $-1$ $0$ $1$ $2$ $3$
$\mathrm{p}(x):$ 0.1 0.2 0.2 0.3 0.15 0.05

Then the $\operatorname{Var}(\mathrm{X})$ is

(Given : $$\left.(0.25)^2=0.0625,(0.35)^2=0.1225,(0.45)^2=0.2025\right)$$

A
0.8275
B
1.1225
C
1.8275
D
2.0725
2
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The number of all values of $\theta$ in the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ satisfying the equation $(1-\tan \theta)(1+\tan \theta) \sec ^2 \theta+2 \tan ^2 \theta=0$ is

A
1
B
0
C
2
D
infinitely many.
3
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Two cards are drawn successively with replacement from a well- shuffled pack of 52 cards. Let X denote the random variable of number of kings obtained in the two drawn cards. Then $\mathrm{P}(x=1)+\mathrm{P}(x=2)$ equals

A
$\frac{49}{169}$
B
$\frac{24}{169}$
C
$\frac{52}{169}$
D
$\frac{25}{169}$
4
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The curve $y=a x^3+b x^2+c x+5$ touches the $x$-axis at $(-2,0)$ and cuts the $y$-axis at a point Q where its gradient is 3 , then the value of $\mathrm{a}+\mathrm{b}+\mathrm{c}$ is

A
$\frac{7}{8}$
B
$\frac{7}{4}$
C
$\frac{7}{2}$
D
$\frac{7}{12}$
MHT CET Papers
EXAM MAP