1
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The general solution of the differential equation $x \cos y \mathrm{~d} y=\left(x \mathrm{e}^{\mathrm{x}} \log x+\mathrm{e}^x\right) \mathrm{d} x$ is given by

A
$\sin y=\mathrm{e}^x+\operatorname{clog} x$, where c is a constant of integration.
B
$\sin y=\mathrm{e}^{\mathrm{x}} \log x+\mathrm{c}$, where c is a constant of integration.
C
$\mathrm{e}^x \sin y=\log x+\mathrm{c}$, where c is a constant of integration.
D
$\sin y=\mathrm{ce}^x+\log x$, where c is a constant of integration.
2
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The equation $(\operatorname{cosp}-1) x^2+(\cos p) x+\operatorname{sinp}=0$ in the variable $x$, has real roots. Then p can take any value in the interval

A
$(0,2 \pi)$
B
$(-\pi, 0)$
C
$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
D
$(0, \pi)$
3
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

A committee of 11 members is to be formed from 8 males and 5 females. If $m$ is the number of ways the committee is formed with at least 6 males and $n$ is the number of ways the committee is formed with at least 3 females, then

A
$\mathrm{m}+\mathrm{n}=68$
B
$\mathrm{m}=\mathrm{n}=78$
C
$\mathrm{m}=\mathrm{n}=68$
D
$\mathrm{n}=\mathrm{m}-8$
4
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $y=[(x+1)(2 x+1)(3 x+1) \ldots \ldots \ldots(n x+1)]^4$ then $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at $x=0$ is

A
$\frac{\mathrm{n}(\mathrm{n}+1)}{2}$
B
$4 \mathrm{n}(\mathrm{n}+1)$
C
$\left(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right)^2$
D
$2 \mathrm{n}(\mathrm{n}+1)$
MHT CET Papers
EXAM MAP