1
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\bar{a}=a_1 \hat{i}+a_2 \hat{j}+a_3 \hat{k}, \bar{b}=b_1 \hat{i}+b_2 \hat{j}+b_3 \hat{k} \quad$ and $\bar{c}=c_1 \hat{i}+c_2 \hat{j}+c_3 \hat{k}$ are non-zero non-coplanar vectors and $m$ is non-zero scalar such that $[\mathrm{m} \overline{\mathrm{a}}+\overline{\mathrm{b}} \quad \mathrm{m} \overline{\mathrm{b}}+\overline{\mathrm{c}} \mathrm{m} \overline{\mathrm{c}}+\overline{\mathrm{a}}]=28[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]$, then the value of $m$ is equal to

A
2
B
3
C
4
D
7
2
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The area of the region, bounded by the parabola $y=x^2+2$ and the lines $y=x, x=0$ and $x=3$, is

A
$\frac{9}{2}$ sq. units
B
$\frac{11}{2}$ sq. units
C
$\frac{15}{2}$ sq. units
D
$\frac{21}{2}$ sq. units
3
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $0< x < 1$, then

$$\sqrt{1+x^2}\left[\left\{x \cos \left(\cot ^{-1} x\right)+\sin \left(\cot ^{-1} x\right)\right\}^2-1\right]^{\frac{1}{2}}=$$

A
$\frac{x}{\sqrt{1+x^2}}$
B
$x$
C
$\sqrt{1+x^2}$
D
$x \sqrt{1+x^2}$
4
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

For the probability distribution

$\mathrm{X:}$ $-2$ $-1$ $0$ $1$ $2$ $3$
$\mathrm{p}(x):$ 0.1 0.2 0.2 0.3 0.15 0.05

Then the $\operatorname{Var}(\mathrm{X})$ is

(Given : $$\left.(0.25)^2=0.0625,(0.35)^2=0.1225,(0.45)^2=0.2025\right)$$

A
0.8275
B
1.1225
C
1.8275
D
2.0725
MHT CET Papers
EXAM MAP