1
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The value of the integral $\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}}\left(x^2+\log \frac{\pi-x}{\pi+x}\right) \cos x d x$ is equal to

A
0
B
$\frac{\pi^2}{2}-4$
C
$\frac{\pi^2}{2}$
D
$\frac{\pi^2}{2}+4$
2
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

For the system $x-y+z=4,2 x+y-3 z=0$, $x+y+z=2$, the values of $x, y, z$ respectively are given by

A
$2,1,1$
B
$2,1,-1$
C
$2,-1,1$
D
$-2,1,1$
3
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\int \sin \sqrt{x} \mathrm{dx}$ is equal to

A
$\sin \sqrt{x}-2 \sqrt{x} \cos \sqrt{x}+c$, where $c$ is a constant of integration.
B
$2 \cos \sqrt{x}-2 \sqrt{x} \sin \sqrt{x}+\mathrm{c}$, where c is a constant of integration.
C
$\cos \sqrt{x}-2 \sqrt{x} \sin \sqrt{x}+c$, where $c$ is a constant of integration.
D
$2 \sin \sqrt{x}-2 \sqrt{x} \cos \sqrt{x}+c$, where $c$ is a constant of integration.
4
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the vectors $\overline{A B}=3 \hat{i}+4 \hat{k}$ and $\overline{A C}=5 \hat{i}-2 \hat{j}+4 \hat{k}$ are the sides of the triangle $A B C$, then the length of the median through $A$ is

A
$\sqrt{45}$ units
B
$\sqrt{18}$ units
C
$\sqrt{72}$ units
D
$\sqrt{33}$ units
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12