1
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{f}(x)=x^3+b x^2+c x+d$ and $0< b^2< c$, then in $(-\infty, \infty)$

A
$f(x)$ is strictly increasing function
B
$\mathrm{f}(x)$ is bounded
C
$\mathrm{f}(x)$ has a local maxima
D
$\mathrm{f}(x)$ is a strictly decreasing function
2
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{f}\left(\frac{x-4}{x-2}\right)=2 x+1, x \in \mathbb{R}-\{1,-2\}$, then $\int \mathrm{f}(x) \mathrm{d} x$ is equal to

A
$5 x-4 \log (x-1)+\mathrm{c}$, where c is constant of integration.
B
$x-4 \log (x-1)+c$, where $c$ is constant of integration.
C
$5 x+4 \log (x-1)+\mathrm{c}$, where c is constant of integration.
D
$5 x+\log (x-1)+\mathrm{c}$, where c is constant of integration.
3
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\sin (\theta-\alpha), \sin \theta$ and $\sin (\theta+\alpha)$ are in H.P., then the value of $\cos ^2 \theta$ is

A
$1-2 \cos ^2 \frac{\alpha}{2}$
B
$1+2 \cos ^2 \frac{\alpha}{2}$
C
$1-4 \cos ^2 \frac{\alpha}{2}$
D
$1+4 \cos ^2 \frac{\alpha}{2}$
4
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The equation of the plane passing through the point $(1,1,1)$ and perpendicular to the planes $2 x-y-2 z=5$ and $3 x-6 y+2 z=7$ is

A
$14 x+10 y+9 z=13$
B
$14 x+10 y+9 z=33$
C
$14 x+10 y+9 z=-15$
D
$14 x+10 y+9 z=-33$
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12