1
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{f}(x)=x^3+b x^2+c x+d$ and $0< b^2< c$, then in $(-\infty, \infty)$

A
$f(x)$ is strictly increasing function
B
$\mathrm{f}(x)$ is bounded
C
$\mathrm{f}(x)$ has a local maxima
D
$\mathrm{f}(x)$ is a strictly decreasing function
2
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{f}\left(\frac{x-4}{x-2}\right)=2 x+1, x \in \mathbb{R}-\{1,-2\}$, then $\int \mathrm{f}(x) \mathrm{d} x$ is equal to

A
$5 x-4 \log (x-1)+\mathrm{c}$, where c is constant of integration.
B
$x-4 \log (x-1)+c$, where $c$ is constant of integration.
C
$5 x+4 \log (x-1)+\mathrm{c}$, where c is constant of integration.
D
$5 x+\log (x-1)+\mathrm{c}$, where c is constant of integration.
3
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\sin (\theta-\alpha), \sin \theta$ and $\sin (\theta+\alpha)$ are in H.P., then the value of $\cos ^2 \theta$ is

A
$1-2 \cos ^2 \frac{\alpha}{2}$
B
$1+2 \cos ^2 \frac{\alpha}{2}$
C
$1-4 \cos ^2 \frac{\alpha}{2}$
D
$1+4 \cos ^2 \frac{\alpha}{2}$
4
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The equation of the plane passing through the point $(1,1,1)$ and perpendicular to the planes $2 x-y-2 z=5$ and $3 x-6 y+2 z=7$ is

A
$14 x+10 y+9 z=13$
B
$14 x+10 y+9 z=33$
C
$14 x+10 y+9 z=-15$
D
$14 x+10 y+9 z=-33$
MHT CET Papers
EXAM MAP