1
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\int \frac{\operatorname{cosec} x d x}{\cos ^2\left(1+\log \tan \frac{x}{2}\right)}=$$

A
$\tan \left(1+\log \tan \frac{x}{2}\right)+\mathrm{c}$, where c is a constant of integration.
B
$\frac{1}{2} \tan \left(1+\log \tan \frac{x}{2}\right)+\mathrm{c}$, where c is a constant of integration.
C
$2 \tan \left(1+\log \tan \frac{x}{2}\right)+\mathrm{c}$, where c is a constant of integration.
D
$\frac{1}{4} \tan \left(1+\log \tan \frac{x}{2}\right)+\mathrm{c}$, where c is a constant of integration.
2
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The vectors $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$ are not perpendicular and $\overline{\mathrm{c}}$ and $\overline{\mathrm{d}}$ are two vectors satisfying $\overline{\mathrm{b}} \times \overline{\mathrm{c}}=\overline{\mathrm{b}} \times \overline{\mathrm{d}}$ and $\overline{\mathrm{a}} \cdot \overline{\mathrm{d}}=0$, then the vector $\overline{\mathrm{d}}$ is equal to

A
$\overline{\mathrm{b}}+\left(\frac{\overline{\mathrm{b}} \cdot \overline{\mathrm{c}}}{\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}}\right) \overline{\mathrm{c}}$
B
$\overline{\mathrm{c}}-\left(\frac{\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}}{\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}}\right) \overline{\mathrm{b}}$
C
$\bar{b}-\left(\frac{\bar{b} \cdot \bar{c}}{\bar{a} \cdot \bar{b}}\right) \bar{c}$
D
$\overline{\mathrm{c}}+\left(\frac{\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}}{\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}}\right) \overline{\mathrm{b}}$
3
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the function $\mathrm{f}(x)=\left(\frac{5 x-8}{8-3 x}\right)^{\frac{3}{2 x-4}}$ if $x \neq 2$. $=\mathrm{k}$ if $x=2$. is continuous at $x=2$, then $\mathrm{k}=$

A
$\mathrm{e}^6$
B
$\mathrm{e}^2$
C
$e^{-6}$
D
$\mathrm{e}^{-2}$
4
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The domain of definition of $\mathrm{f}(x)=\frac{\log _2(x+3)}{x^2+3 x+2}$ is

A
$\mathrm{R}-\{1,2\}$
B
$(-2, \infty)$
C
$\mathrm{R}-\{-1,-2,-3\}$
D
$(-3, \infty)-\{-1,-2\}$
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12