1
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\sin (\theta-\alpha), \sin \theta$ and $\sin (\theta+\alpha)$ are in H.P., then the value of $\cos ^2 \theta$ is

A
$1-2 \cos ^2 \frac{\alpha}{2}$
B
$1+2 \cos ^2 \frac{\alpha}{2}$
C
$1-4 \cos ^2 \frac{\alpha}{2}$
D
$1+4 \cos ^2 \frac{\alpha}{2}$
2
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The equation of the plane passing through the point $(1,1,1)$ and perpendicular to the planes $2 x-y-2 z=5$ and $3 x-6 y+2 z=7$ is

A
$14 x+10 y+9 z=13$
B
$14 x+10 y+9 z=33$
C
$14 x+10 y+9 z=-15$
D
$14 x+10 y+9 z=-33$
3
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The tangent to the circle $x^2+y^2=5$ at $(1,-2)$ also touches the circle $x^2+y^2-8 x+6 y+20=0$ then the co-ordinates of the corresponding point of contact is

A
$(3,-1)$
B
$(-3,-1)$
C
$(3,1)$
D
$(-3,1)$
4
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The general solution of the differential equation $x \cos y \mathrm{~d} y=\left(x \mathrm{e}^{\mathrm{x}} \log x+\mathrm{e}^x\right) \mathrm{d} x$ is given by

A
$\sin y=\mathrm{e}^x+\operatorname{clog} x$, where c is a constant of integration.
B
$\sin y=\mathrm{e}^{\mathrm{x}} \log x+\mathrm{c}$, where c is a constant of integration.
C
$\mathrm{e}^x \sin y=\log x+\mathrm{c}$, where c is a constant of integration.
D
$\sin y=\mathrm{ce}^x+\log x$, where c is a constant of integration.
MHT CET Papers
EXAM MAP