1
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The curve $y=a x^3+b x^2+c x+5$ touches the $x$-axis at $(-2,0)$ and cuts the $y$-axis at a point Q where its gradient is 3 , then the value of $\mathrm{a}+\mathrm{b}+\mathrm{c}$ is

A
$\frac{7}{8}$
B
$\frac{7}{4}$
C
$\frac{7}{2}$
D
$\frac{7}{12}$
2
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $\mathrm{L}_1$ $\frac{x+1}{3}=\frac{y+2}{2}=\frac{z+1}{1}$ and $\mathrm{L}_2: \frac{x-2}{2}=\frac{y+2}{1}=\frac{z-3}{3}$ be the given lines. Then the unit vector perpendicular to $L_1$ and $L_2$ is

A
$\frac{-5 \hat{\mathrm{i}}+7 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}}{\sqrt{78}}$
B
$\frac{5 \hat{\mathrm{i}}-7 \hat{\mathrm{j}}+\hat{\mathrm{k}}}{5 \sqrt{3}}$
C
$\frac{5 \hat{\mathrm{i}}-7 \hat{\mathrm{j}}-\hat{\mathrm{k}}}{5 \sqrt{3}}$
D
$\frac{5 \hat{i}+7 \hat{j}-\hat{k}}{5 \sqrt{3}}$
3
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $y=a \log x+b x^2+x$ has its extreme value at $x=-1$ and $x=2$, then the value of $a+b$ is

A
$\frac{3}{2}$
B
$\frac{1}{2}$
C
$\frac{5}{2}$
D
$\frac{3}{4}$
4
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The value of the integral $\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}}\left(x^2+\log \frac{\pi-x}{\pi+x}\right) \cos x d x$ is equal to

A
0
B
$\frac{\pi^2}{2}-4$
C
$\frac{\pi^2}{2}$
D
$\frac{\pi^2}{2}+4$
MHT CET Papers
EXAM MAP