1
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The domain of definition of $\mathrm{f}(x)=\frac{\log _2(x+3)}{x^2+3 x+2}$ is

A
$\mathrm{R}-\{1,2\}$
B
$(-2, \infty)$
C
$\mathrm{R}-\{-1,-2,-3\}$
D
$(-3, \infty)-\{-1,-2\}$
2
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The equation of pair of lines $y=p x$ and $y=q x$ can be written as $(y-p x)(y-q x)=0$. Then the equation of the pair of the angle bisectors of the lines $x^2-4 x y-5 y^2=0$ is

A
$x^2-3 x y+y^2=0$
B
$x^2+4 x y-y^2=0$
C
$x^2-3 x y-y^2=0$
D
$x^2+3 x y-y^2=0$
3
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The equation $(\operatorname{cosp}-1) x^2+(\operatorname{cosp}) x+\sin p=0$ in the variable $x$, has real roots. Then p can take any value in the interval

A
$(0,2 \pi)$
B
$(-\pi, 0)$
C
$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
D
$(0, \pi)$
4
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\overline{\mathrm{a}}=\frac{1}{\sqrt{10}}(4 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+\hat{\mathrm{k}}), \overline{\mathrm{b}}=\frac{1}{5}(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})$, then the value of $(2 \bar{a}-\bar{b}) \cdot\{(\bar{a} \times \bar{b}) \times(\bar{a}+2 \bar{b})\}$ is

A
5
B
$-$3
C
$-$5
D
3
MHT CET Papers
EXAM MAP