1
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The domain of definition of $\mathrm{f}(x)=\frac{\log _2(x+3)}{x^2+3 x+2}$ is

A
$\mathrm{R}-\{1,2\}$
B
$(-2, \infty)$
C
$\mathrm{R}-\{-1,-2,-3\}$
D
$(-3, \infty)-\{-1,-2\}$
2
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The equation of pair of lines $y=p x$ and $y=q x$ can be written as $(y-p x)(y-q x)=0$. Then the equation of the pair of the angle bisectors of the lines $x^2-4 x y-5 y^2=0$ is

A
$x^2-3 x y+y^2=0$
B
$x^2+4 x y-y^2=0$
C
$x^2-3 x y-y^2=0$
D
$x^2+3 x y-y^2=0$
3
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The equation $(\operatorname{cosp}-1) x^2+(\operatorname{cosp}) x+\sin p=0$ in the variable $x$, has real roots. Then p can take any value in the interval

A
$(0,2 \pi)$
B
$(-\pi, 0)$
C
$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
D
$(0, \pi)$
4
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\overline{\mathrm{a}}=\frac{1}{\sqrt{10}}(4 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+\hat{\mathrm{k}}), \overline{\mathrm{b}}=\frac{1}{5}(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})$, then the value of $(2 \bar{a}-\bar{b}) \cdot\{(\bar{a} \times \bar{b}) \times(\bar{a}+2 \bar{b})\}$ is

A
5
B
$-$3
C
$-$5
D
3
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12