1
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

For the system $x-y+z=4,2 x+y-3 z=0$, $x+y+z=2$, the values of $x, y, z$ respectively are given by

A
$2,1,1$
B
$2,1,-1$
C
$2,-1,1$
D
$-2,1,1$
2
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\int \sin \sqrt{x} \mathrm{dx}$ is equal to

A
$\sin \sqrt{x}-2 \sqrt{x} \cos \sqrt{x}+c$, where $c$ is a constant of integration.
B
$2 \cos \sqrt{x}-2 \sqrt{x} \sin \sqrt{x}+\mathrm{c}$, where c is a constant of integration.
C
$\cos \sqrt{x}-2 \sqrt{x} \sin \sqrt{x}+c$, where $c$ is a constant of integration.
D
$2 \sin \sqrt{x}-2 \sqrt{x} \cos \sqrt{x}+c$, where $c$ is a constant of integration.
3
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the vectors $\overline{A B}=3 \hat{i}+4 \hat{k}$ and $\overline{A C}=5 \hat{i}-2 \hat{j}+4 \hat{k}$ are the sides of the triangle $A B C$, then the length of the median through $A$ is

A
$\sqrt{45}$ units
B
$\sqrt{18}$ units
C
$\sqrt{72}$ units
D
$\sqrt{33}$ units
4
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{f}(x)=x^3+b x^2+c x+d$ and $0< b^2< c$, then in $(-\infty, \infty)$

A
$f(x)$ is strictly increasing function
B
$\mathrm{f}(x)$ is bounded
C
$\mathrm{f}(x)$ has a local maxima
D
$\mathrm{f}(x)$ is a strictly decreasing function
MHT CET Papers
EXAM MAP