1
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $0< x < 1$, then

$$\sqrt{1+x^2}\left[\left\{x \cos \left(\cot ^{-1} x\right)+\sin \left(\cot ^{-1} x\right)\right\}^2-1\right]^{\frac{1}{2}}=$$

A
$\frac{x}{\sqrt{1+x^2}}$
B
$x$
C
$\sqrt{1+x^2}$
D
$x \sqrt{1+x^2}$
2
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

For the probability distribution

$\mathrm{X:}$ $-2$ $-1$ $0$ $1$ $2$ $3$
$\mathrm{p}(x):$ 0.1 0.2 0.2 0.3 0.15 0.05

Then the $\operatorname{Var}(\mathrm{X})$ is

(Given : $$\left.(0.25)^2=0.0625,(0.35)^2=0.1225,(0.45)^2=0.2025\right)$$

A
0.8275
B
1.1225
C
1.8275
D
2.0725
3
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The number of all values of $\theta$ in the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ satisfying the equation $(1-\tan \theta)(1+\tan \theta) \sec ^2 \theta+2 \tan ^2 \theta=0$ is

A
1
B
0
C
2
D
infinitely many.
4
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Two cards are drawn successively with replacement from a well- shuffled pack of 52 cards. Let X denote the random variable of number of kings obtained in the two drawn cards. Then $\mathrm{P}(x=1)+\mathrm{P}(x=2)$ equals

A
$\frac{49}{169}$
B
$\frac{24}{169}$
C
$\frac{52}{169}$
D
$\frac{25}{169}$
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12