1
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The equation $(\operatorname{cosp}-1) x^2+(\operatorname{cosp}) x+\sin p=0$ in the variable $x$, has real roots. Then p can take any value in the interval

A
$(0,2 \pi)$
B
$(-\pi, 0)$
C
$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
D
$(0, \pi)$
2
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\overline{\mathrm{a}}=\frac{1}{\sqrt{10}}(4 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+\hat{\mathrm{k}}), \overline{\mathrm{b}}=\frac{1}{5}(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})$, then the value of $(2 \bar{a}-\bar{b}) \cdot\{(\bar{a} \times \bar{b}) \times(\bar{a}+2 \bar{b})\}$ is

A
5
B
$-$3
C
$-$5
D
3
3
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let a random variable X have a Binomial distribution with mean 8 and variance 4 . If $\mathrm{P}(x \leqslant 2)=\frac{\mathrm{k}}{2^{16}}$, then k is equal to

A
17
B
121
C
1
D
137
4
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\bar{a}=a_1 \hat{i}+a_2 \hat{j}+a_3 \hat{k}, \bar{b}=b_1 \hat{i}+b_2 \hat{j}+b_3 \hat{k} \quad$ and $\bar{c}=c_1 \hat{i}+c_2 \hat{j}+c_3 \hat{k}$ are non-zero non-coplanar vectors and $m$ is non-zero scalar such that $[\mathrm{m} \overline{\mathrm{a}}+\overline{\mathrm{b}} \quad \mathrm{m} \overline{\mathrm{b}}+\overline{\mathrm{c}} \mathrm{m} \overline{\mathrm{c}}+\overline{\mathrm{a}}]=28[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]$, then the value of $m$ is equal to

A
2
B
3
C
4
D
7
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12