Two rods, one of copper ( Cu$)$ and the other of iron ( Fe ) having initial lengths $\mathrm{L}_1$ and $\mathrm{L}_2$ respectively are connected together to form a single rod of length $L_1+L_2$. The coefficient of linear expansion of Cu and Fe are $\alpha_c$ and $\alpha_i$ respectively. If the length of each rod increases by the same amount when their temperatures are raised by $t^{\circ} \mathrm{C}$, then ratio of $\frac{L_1-L_2}{L_1+L_2}$ will be
Frequency of a particle performing S.H.M. is 10 Hz . The particle is suspended from a vertical spring. At the highest point of its oscillation the spring is unstretched. Maximum speed of the particle is $\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^2\right)$
Two charged particles each having charge ' $q$ ' and mass ' $m$ ' are held at rest while their separation is ' $r$ '. The speed of the particles when their separation is ' $\frac{\mathrm{r}}{2}$ ' will be ( $\varepsilon_0=$ permittivity of the medium)
The pressure inside a soap bubble $A$ is 1.01 atmosphere and that in a soap bubble B is 1.02 atmosphere. The ratio of volume of bubble A to that of B is [Surrounding pressure $=1$ atmosphere]