1
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If order and degree of the differential equation $\left(\frac{\mathrm{d}^2 y}{\mathrm{~d} x^2}\right)^5+4 \frac{\left(\frac{\mathrm{~d}^2 y}{\mathrm{~d} x^2}\right)^5}{\left(\frac{\mathrm{~d}^3 y}{\mathrm{~d} x^3}\right)}+\frac{\mathrm{d}^3 y}{\mathrm{~d} x^3}=\sin x$, are $m$ and $n$ respectively, then the value of $\left(\mathrm{m}^2+\mathrm{n}^2\right)$ is equal to

A
29
B
13
C
5
D
8
2
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

A student scores the following marks in five tests : $54,45,41,43,57$. His score is not known for the sixth test. If the mean score is 48 in six tests, then the standard deviation of marks in six tests is

A
$\frac{100}{\sqrt{3}}$
B
$\frac{10}{\sqrt{3}}$
C
$\frac{100}{3}$
D
$\frac{10}{3}$
3
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $y=\tan ^{-1}\left(\frac{3+2 x}{2-3 x}\right)+\tan ^{-1}\left(\frac{3 x}{1+4 x^2}\right)$, then $\frac{\mathrm{d} y}{\mathrm{~d} x}$ is equal to

A
$\frac{1}{1+16 x^2}$
B
$\frac{4}{1+16 x^2}$
C
$\frac{1}{1+4 x^2}$
D
$\frac{4}{1+4 x^2}$
4
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The value of c for which Rolle's theorem for the function $\mathrm{f}(x)=x^3-3 x^2+2 x$ in the interval $[0,2]$ are

A
$\pm 1$
B
$\pm 2$
C
$1 \pm \frac{1}{\sqrt{3}}$
D
$\sqrt{3}(1 \pm \sqrt{3})$
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12