1
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+1
-0

Two charged particles each having charge ' $q$ ' and mass ' $m$ ' are held at rest while their separation is ' $r$ '. The speed of the particles when their separation is ' $\frac{\mathrm{r}}{2}$ ' will be ( $\varepsilon_0=$ permittivity of the medium)

A
$\frac{q}{4 \pi \varepsilon_0 \mathrm{mr}}$
B
$\frac{\mathrm{q}}{2 \pi \varepsilon_0 \mathrm{mr}}$
C
$\frac{\mathrm{q}}{\sqrt{4 \pi \varepsilon_0 \mathrm{mr}}}$
D
$\frac{\mathrm{q}^2}{4 \pi \varepsilon_0 \mathrm{mr}}$
2
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+1
-0

The pressure inside a soap bubble $A$ is 1.01 atmosphere and that in a soap bubble B is 1.02 atmosphere. The ratio of volume of bubble A to that of B is [Surrounding pressure $=1$ atmosphere]

A
$101:102$
B
$102: 101$
C
$8: 1$
D
$2: 1$
3
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+1
-0

In Young's double slit experiment, in an interference pattern, second minimum is observed exactly in front of one slit. The distance between the two coherent sources is ' $d$ ' and the distance between the source and screen is ' $D$ '. The wave length of light $(\lambda)$ used is

A
$\frac{\mathrm{d}^2}{\mathrm{D}}$
B
$\frac{\mathrm{d}^2}{2 \mathrm{D}}$
C
$\frac{\mathrm{d}^2}{3 \mathrm{D}}$
D
$\frac{d^2}{4 D}$
4
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+1
-0

An observer moves towards a stationary source of sound with a velocity of one-fifth of the velocity of sound. The percentage increase in the apparent frequency is

A
$5 \%$
B
$10 \%$
C
$20 \%$
D
$25 \%$
MHT CET Papers
EXAM MAP