1
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

On which of the following lines lies the point of intersection of the line, $\frac{x-4}{2}=\frac{y-5}{2}=\frac{z-3}{1}$ and the plane $x+y+z=2$ ?

A
$\frac{x-1}{1}=\frac{y-3}{2}=\frac{z+4}{-5}$
B
$\frac{x-4}{1}=\frac{y-5}{1}=\frac{z-5}{-1}$
C
$\frac{x-2}{2}=\frac{y-3}{2}=\frac{z+3}{3}$
D
$\frac{x+3}{3}=\frac{4-y}{3}=\frac{z+1}{-2}$
2
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\sim[(\mathrm{p} \vee \sim \mathrm{q}) \rightarrow(\mathrm{p} \wedge \sim \mathrm{q})] \equiv$$

A
$(p \wedge \sim q) \wedge(\sim p \vee q)$
B
$(p \wedge \sim q) \wedge(\sim p \wedge q)$
C
$(p \vee \sim q) \wedge(\sim p \vee q)$
D
$(p \vee \sim q) \vee(\sim p \vee q)$
3
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $z^2+z+1=0$ then $\left(z^3+\frac{1}{z^3}\right)^2+\left(z^4+\frac{1}{z^4}\right)^2=$ where $z=w=$ complex cube root of unity

A
4
B
1
C
5
D
2
4
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Two cards are drawn successively with replacement from a well shuffled pack of 52 cards. Then mean of number of kings is

A
$\frac{1}{13}$
B
$\frac{1}{169}$
C
$\frac{2}{13}$
D
$\frac{4}{169}$
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12