1
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

A committee of 11 members is to be formed from 8 males and 5 females. If $m$ is the number of ways the committee is formed with at least 6 males and $n$ is the number of ways the committee is formed with at least 3 females, then

A
$\mathrm{m}+\mathrm{n}=68$
B
$\mathrm{m}=\mathrm{n}=78$
C
$\mathrm{m}=\mathrm{n}=68$
D
$\mathrm{n}=\mathrm{m}-8$
2
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $y=[(x+1)(2 x+1)(3 x+1) \ldots \ldots \ldots(n x+1)]^4$ then $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at $x=0$ is

A
$\frac{\mathrm{n}(\mathrm{n}+1)}{2}$
B
$4 \mathrm{n}(\mathrm{n}+1)$
C
$\left(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right)^2$
D
$2 \mathrm{n}(\mathrm{n}+1)$
3
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $\alpha$ and $\beta$ be two real roots of the equation $(k+1) \tan ^2 x-\sqrt{2} \lambda \tan x=(1-k)$ where $k(\neq-1)$ and $\lambda$ are real numbers. If $\tan ^2(\alpha+\beta)=50$, then a value of $\lambda$ is

A
$5 \sqrt{2}$
B
$10 \sqrt{2}$
C
10
D
5
4
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $\overline{\mathrm{a}}=\hat{\mathrm{j}}-\hat{\mathrm{k}}$ and $\overline{\mathrm{c}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}-\hat{\mathrm{k}}$. Then the vector $\overline{\mathrm{b}}$ satisfying $\overline{\mathrm{a}} \times \overline{\mathrm{b}}+\overline{\mathrm{c}}=\overline{0}$ and $\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}=3$, is

A
$-\hat{i}+\hat{j}-2 \hat{k}$
B
$2 \hat{i}-\hat{j}+2 \hat{k}$
C
$\hat{i}-\hat{j}-2 \hat{k}$
D
$\hat{i}+\hat{j}-2 \hat{k}$
MHT CET Papers
EXAM MAP