1
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $\alpha$ and $\beta$ be two real roots of the equation $(k+1) \tan ^2 x-\sqrt{2} \lambda \tan x=(1-k)$ where $k(\neq-1)$ and $\lambda$ are real numbers. If $\tan ^2(\alpha+\beta)=50$, then a value of $\lambda$ is

A
$5 \sqrt{2}$
B
$10 \sqrt{2}$
C
10
D
5
2
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $\overline{\mathrm{a}}=\hat{\mathrm{j}}-\hat{\mathrm{k}}$ and $\overline{\mathrm{c}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}-\hat{\mathrm{k}}$. Then the vector $\overline{\mathrm{b}}$ satisfying $\overline{\mathrm{a}} \times \overline{\mathrm{b}}+\overline{\mathrm{c}}=\overline{0}$ and $\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}=3$, is

A
$-\hat{i}+\hat{j}-2 \hat{k}$
B
$2 \hat{i}-\hat{j}+2 \hat{k}$
C
$\hat{i}-\hat{j}-2 \hat{k}$
D
$\hat{i}+\hat{j}-2 \hat{k}$
3
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The maximum value of $\mathrm{Z}=x+y$, subjected to $x+y \leq 10,5 x+3 y \geq 15, x \leq 6, x, y \geq 0$

A
occurs only at unique point
B
occurs only at two distinct points
C
occurs at infinitely many points
D
does not exist
4
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Equation of the plane containing the straight line $\frac{x}{2}=\frac{y}{3}=\frac{z}{4}$ and perpendicular to the plane containing the straight lines $\frac{x}{3}=\frac{y}{4}=\frac{z}{2}$ and $\frac{x}{4}=\frac{y}{2}=\frac{z}{3}$ is

A
$x+2 y-2 z=0$
B
$3 x+2 y-2 z=0$
C
$x-2 y+z=0$
D
$5 x+2 y-4 z=0$
MHT CET Papers
EXAM MAP