1
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $\alpha$ and $\beta$ be two real roots of the equation $(k+1) \tan ^2 x-\sqrt{2} \lambda \tan x=(1-k)$ where $k(\neq-1)$ and $\lambda$ are real numbers. If $\tan ^2(\alpha+\beta)=50$, then a value of $\lambda$ is

A
$5 \sqrt{2}$
B
$10 \sqrt{2}$
C
10
D
5
2
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $\overline{\mathrm{a}}=\hat{\mathrm{j}}-\hat{\mathrm{k}}$ and $\overline{\mathrm{c}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}-\hat{\mathrm{k}}$. Then the vector $\overline{\mathrm{b}}$ satisfying $\overline{\mathrm{a}} \times \overline{\mathrm{b}}+\overline{\mathrm{c}}=\overline{0}$ and $\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}=3$, is

A
$-\hat{i}+\hat{j}-2 \hat{k}$
B
$2 \hat{i}-\hat{j}+2 \hat{k}$
C
$\hat{i}-\hat{j}-2 \hat{k}$
D
$\hat{i}+\hat{j}-2 \hat{k}$
3
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The maximum value of $\mathrm{Z}=x+y$, subjected to $x+y \leq 10,5 x+3 y \geq 15, x \leq 6, x, y \geq 0$

A
occurs only at unique point
B
occurs only at two distinct points
C
occurs at infinitely many points
D
does not exist
4
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Equation of the plane containing the straight line $\frac{x}{2}=\frac{y}{3}=\frac{z}{4}$ and perpendicular to the plane containing the straight lines $\frac{x}{3}=\frac{y}{4}=\frac{z}{2}$ and $\frac{x}{4}=\frac{y}{2}=\frac{z}{3}$ is

A
$x+2 y-2 z=0$
B
$3 x+2 y-2 z=0$
C
$x-2 y+z=0$
D
$5 x+2 y-4 z=0$
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12