1
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+1
-0

Frequency of a particle performing S.H.M. is 10 Hz . The particle is suspended from a vertical spring. At the highest point of its oscillation the spring is unstretched. Maximum speed of the particle is $\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^2\right)$

A
$\frac{1}{\pi} \mathrm{~m} / \mathrm{s}$
B
$\frac{1}{2 \pi} \mathrm{~m} / \mathrm{s}$
C
  $\frac{1}{4 \pi} \mathrm{~m} / \mathrm{s}$
D
$2 \pi \mathrm{~m} / \mathrm{s}$
2
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+1
-0

Two charged particles each having charge ' $q$ ' and mass ' $m$ ' are held at rest while their separation is ' $r$ '. The speed of the particles when their separation is ' $\frac{\mathrm{r}}{2}$ ' will be ( $\varepsilon_0=$ permittivity of the medium)

A
$\frac{q}{4 \pi \varepsilon_0 \mathrm{mr}}$
B
$\frac{\mathrm{q}}{2 \pi \varepsilon_0 \mathrm{mr}}$
C
$\frac{\mathrm{q}}{\sqrt{4 \pi \varepsilon_0 \mathrm{mr}}}$
D
$\frac{\mathrm{q}^2}{4 \pi \varepsilon_0 \mathrm{mr}}$
3
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+1
-0

The pressure inside a soap bubble $A$ is 1.01 atmosphere and that in a soap bubble B is 1.02 atmosphere. The ratio of volume of bubble A to that of B is [Surrounding pressure $=1$ atmosphere]

A
$101:102$
B
$102: 101$
C
$8: 1$
D
$2: 1$
4
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+1
-0

In Young's double slit experiment, in an interference pattern, second minimum is observed exactly in front of one slit. The distance between the two coherent sources is ' $d$ ' and the distance between the source and screen is ' $D$ '. The wave length of light $(\lambda)$ used is

A
$\frac{\mathrm{d}^2}{\mathrm{D}}$
B
$\frac{\mathrm{d}^2}{2 \mathrm{D}}$
C
$\frac{\mathrm{d}^2}{3 \mathrm{D}}$
D
$\frac{d^2}{4 D}$
MHT CET Papers
EXAM MAP