1
GATE ME 2007
MCQ (Single Correct Answer)
+2
-0.6
Consider a steady incompressible flow through a channel as shown below. GATE ME 2007 Fluid Mechanics - Boundary Layer Question 3 English

The velocity profile is uniform with a value of $${u_0}$$ at the inlet section $$A$$. The velocity profile at section B down stream is

$$$u\left\{ {\matrix{ {{V_m}{y \over \delta },} & {0 \le y \le \delta } \cr {{V_m},} & {\delta \le y \le H - \delta } \cr {{V_m}{{H - y} \over \delta },} & {H - \delta \le y \le H} \cr } } \right.$$$

The ratio $${{{V_m}} \over {{u_0}}}$$ is

A
$${1 \over {1 - 2\left( {\delta /H} \right)}}$$
B
$$1$$
C
$${1 \over {1 - \left( {\delta /H} \right)}}$$
D
$${1 \over {1 + \left( {\delta /H} \right)}}$$
2
GATE ME 2007
MCQ (Single Correct Answer)
+2
-0.6
Consider a steady incompressible flow through a channel as shown below. GATE ME 2007 Fluid Mechanics - Boundary Layer Question 2 English

The velocity profile is uniform with a value of $${u_0}$$ at the inlet section $$A$$. The velocity profile at section B down stream is

$$$u\left\{ {\matrix{ {{V_m}{y \over \delta },} & {0 \le y \le \delta } \cr {{V_m},} & {\delta \le y \le H - \delta } \cr {{V_m}{{H - y} \over \delta },} & {H - \delta \le y \le H} \cr } } \right.$$$

The ratio $${{{P_A} - {P_B}} \over {{1 \over 2}\rho {u_0}^2}}$$ (where $${{P_A}}$$ and $${{P_B}}$$ are the pressure at section $$A$$ and $$B$$ respectively and $$\rho $$ is the density of the fluid ) is

A
$${1 \over {\left( {1 - 2{{\left. {\left( {\delta /H} \right)} \right)}^2}} \right.}} - 1$$
B
$${1 \over {{{\left( {1 - \left. {\left( {\delta /H} \right)} \right)} \right.}^2}}}$$
C
$${1 \over {{{\left( {1 - \left. {\left( {2\delta /H} \right)} \right)} \right.}^2}}} - 1$$
D
$${1 \over {{{\left( {1 + \left. {\left( {\delta /H} \right)} \right)} \right.}^2}}}$$
3
GATE ME 2007
MCQ (Single Correct Answer)
+2
-0.6
Consider steady one-dimensional heat flow in a plate of $$20mm$$ thickness with a uniform heat generation of $$80MW/{m^3}.$$ The left and right faces are kept at constant temperatures of $${160^0}C$$ and $${120^0}C$$ respectively. The plate has a constant thermal conductivity of $$200W/mK.$$

The location of maximum temp within the plate from left face is

A
$$15mm$$
B
$$10mm$$
C
$$5mm$$
D
$$0mm$$
4
GATE ME 2007
MCQ (Single Correct Answer)
+2
-0.6
Consider steady one-dimensional heat flow in a plate of $$20mm$$ thickness with a uniform heat generation of $$80MW/{m^3}.$$ The left and right faces are kept at constant temperatures of $${160^0}C$$ and $${120^0}C$$ respectively. The plate has a constant thermal conductivity of $$200W/mK.$$

The minimum temp within the plate in degree $$C$$ is

A
$$160$$
B
$$165$$
C
$$175$$
D
$$250$$
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
CBSE
Class 12