GATE ME
List $$I$$
(a) Collision of particles
(b) Stability
(C) Satellite motion
(D) Spinning top
List $$II$$
(1) Euler’s equation of motion
(2) Minimum kinetic energy
(3) Minimum potential energy
(4) Impulse-momentum principle
(5) Conservation of moment of momentum
List - $${\rm I}$$
$$A.$$ Grashof number
$$B.$$ Schmid number
$$C.$$ Weber number
$$D.$$ Fourier number
List - $${\rm II}$$
$$1.$$ Mass diffusion
$$2.$$ Transient heat conduction
$$3.$$ Free convection
$$4.$$ Forced convection
$$5.$$ Surface tension
$$6.$$ Radiation
Which schedule will minimize the total cost?
What is the minimum total cost?
Which jobs (if any) fail to meet their due dates?
Assume
(a) constant temperature,
(b) no loss in the velocity head and
(c) diameter of gate $$=8$$ times diameter at the sprue base.
Properties of the molten metal are $$\gamma = 0.9\,\,m{m^2}$$ per second, $$\rho = 700\,\,kg/{m^3},$$ & $${C_p} = 33.6\,\,J/mol$$-$$K.$$ The diameter of sprue to avoid aspiration effect.
List - $${\rm I}$$
$$A.$$ Cetane number
$$B.$$ Approach and range
$$C.$$ $${\left( {{{\delta T} \over {\delta P}}} \right)_h} \ne 0$$
$$D.$$ $$dh = {c_p}\,\,dT,$$ even when pressure varies
List - $${\rm II}$$
$$1.$$ Ideal gas
$$2.$$ Vander Waals gas
$$3.$$ $$S.\,{\rm I}.$$ engine
$$4.$$ $$C.\,{\rm I}.$$ engine
$$5.$$ Cooling towers
$$6.$$ Heat exchangers