1
GATE ME 2007
MCQ (Single Correct Answer)
+1
-0.3
The number of linearly independent eigen vectors of $$\left[ {\matrix{ 2 & 1 \cr 0 & 2 \cr } } \right]$$ is
A
$$0$$
B
$$1$$
C
$$2$$
D
infinite
2
GATE ME 2007
MCQ (Single Correct Answer)
+1
-0.3
If a square matrix $$A$$ is real and symmetric then the eigen values
A
are always real
B
are always real and positive
C
are always real and non-negative
D
occur in complex conjugate pairs
3
GATE ME 2007
MCQ (Single Correct Answer)
+1
-0.3
The partial differential equation $$\,\,{{{\partial ^2}\phi } \over {\partial {x^2}}} + {{{\partial ^2}\phi } \over {\partial {y^2}}} + {{\partial \phi } \over {\partial x}} + {{\partial \phi } \over {\partial y}} = 0\,\,\,\,$$ has
A
degree $$1$$ and order $$2$$
B
degree $$1$$ and order $$1$$
C
degree $$2$$ and order $$1$$
D
degree $$2$$ and order $$2$$
4
GATE ME 2007
MCQ (Single Correct Answer)
+2
-0.6
If $$\phi (x,y)$$ and $$\psi (x,y)$$ are function with continuous 2nd derivatives then $$\phi (x,y)\, + \,i\psi (x,y)$$ can be expressed as an analytic function of x +iy ($$i = \sqrt { - 1} $$) when
A
$${{\partial \phi } \over {\partial x}} = - {{\partial \psi } \over {\partial x}},\,{{\partial \phi } \over {\partial y}} = {{\partial \psi } \over {\partial y}}$$
B
$${{\partial \phi } \over {\partial y}} = - {{\partial \psi } \over {\partial x}},\,{{\partial \phi } \over {\partial x}} = {{\partial \psi } \over {\partial y}}$$
C
$${{{\partial ^2}\phi } \over {\partial {x^2}}} + {{{\partial ^2}\phi } \over {\partial {y^2}}} = {{{\partial ^2}\psi } \over {\partial {x^2}}} + {{{\partial ^2}\psi } \over {\partial {y^2}}} = 1$$
D
$${{\partial \phi } \over {\partial x}} + {{\partial \phi } \over {\partial y}} = {{\partial \psi } \over {\partial x}} + {{\partial \psi } \over {\partial y}} = 0$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12