1
GATE ME 2007
MCQ (Single Correct Answer)
+2
-0.6
The temp distribution within the Laminar thermal boundary layer over a heated isothermal flat plate is given by
$$\left( {T - {T_w}} \right)/\left( {{T_\infty } - {T_w}} \right) = \left( {3/2} \right)\,\,\left( {y/{\delta _t}} \right) - \left( {1/2} \right){\left( {y/{\delta _t}} \right)^3},$$
where $${{T_w}}$$ and $${{T_ \propto }}$$ are the temp of plate and free stream respectively, and $$'y'$$ is the normal distance measuread from the plate. The ratio of Average to the local Nussult number based on the thermal boundary layer thickness $${{\delta _t}}$$ is given by
$$\left( {T - {T_w}} \right)/\left( {{T_\infty } - {T_w}} \right) = \left( {3/2} \right)\,\,\left( {y/{\delta _t}} \right) - \left( {1/2} \right){\left( {y/{\delta _t}} \right)^3},$$
where $${{T_w}}$$ and $${{T_ \propto }}$$ are the temp of plate and free stream respectively, and $$'y'$$ is the normal distance measuread from the plate. The ratio of Average to the local Nussult number based on the thermal boundary layer thickness $${{\delta _t}}$$ is given by
2
GATE ME 2007
MCQ (Single Correct Answer)
+2
-0.6
In a counter flow heat exchanger, hot fluid enters at $${65^ \circ }C$$ and cold fluid leaves at $${30^ \circ }C.$$ mass flow rate of the hot fluid is $$1$$ $$Kg/s$$ and that of cold fluid is $$2$$ $$kg/s$$. Specific heat of the hot fluid is $$10$$ $$kgK$$ and that of cold fluid is $$5$$ $$kj/kgK.$$ The $$LMTD$$ for the heat ecchanger is
3
GATE ME 2007
MCQ (Single Correct Answer)
+2
-0.6
The average heat transfer coefficient on a thin hot vertical plate suspended in still air can be determined from observations of the change in plate temperature with time as it cools. Assume the plate temp to be uniform at any instant of time and radiation heat exchange with the surroundings is negligible. The ambient temperature is $${25^ \circ }C,$$ the plate has a total surface area of $$0.1{m^2}$$ and a mass of $$4$$ kg.
The specific heat of the plate material is $$2.5KJ/KgK.$$ The convective heat transfer coefficient in $$W/{m^2}K,$$ at instant when the plate temp is $${225^ \circ }C$$ and the change in plate temp with time $$dT/dt=-0.02K/s,$$ is
4
GATE ME 2007
MCQ (Single Correct Answer)
+2
-0.6
Building has to be maintained at $${21^ \circ }C$$ (dry bulb) and $${14.5^ \circ }C$$ (wet bulb). The dew point temp under these conditions is $${10.17^0}C$$. The outside temp is $$ - {23^0}C$$ (dry bulb) and internal and external surface heat transfer coefficients are $$8\,\,W/{m^2}K$$ and $$23$$ $$W/{m^2}K$$ respectively. If the building wall has a thermal conductivity of $$1.2$$ $$W/mK,$$ the minimum thickness (m) of wall required to prevent condensation is
Paper analysis
Total Questions
Engineering Mathematics
11
Engineering Mechanics
2
Fluid Mechanics
9
Heat Transfer
6
Industrial Engineering
3
Machine Design
8
Production Engineering
18
Strength of Materials
7
Theory of Machines
7
Thermodynamics
5
Turbo Machinery
3
More papers of GATE ME
GATE ME 2024
GATE ME 2023
GATE ME 2022 Set 2
GATE ME 2022 Set 1
GATE ME 2020 Set 2
GATE ME 2020 Set 1
GATE ME 2019 Set 1
GATE ME 2019 Set 2
GATE ME 2018 Set 2
GATE ME 2018 Set 1
GATE ME 2017 Set 1
GATE ME 2017 Set 2
GATE ME 2016 Set 2
GATE ME 2016 Set 3
GATE ME 2016 Set 1
GATE ME 2015 Set 2
GATE ME 2015 Set 1
GATE ME 2015 Set 3
GATE ME 2014 Set 4
GATE ME 2014 Set 2
GATE ME 2014 Set 1
GATE ME 2014
GATE ME 2014 Set
GATE ME 2014 Set 3
GATE ME 2013
GATE ME 2012
GATE ME 2011
GATE ME 2010
GATE ME 2009
GATE ME 2008
GATE ME 2007
GATE ME 2006
GATE ME 2005
GATE ME 2004
GATE ME 2003
GATE ME 2002
GATE ME 2001
GATE ME 2000
GATE ME 1999
GATE ME 1998
GATE ME 1997
GATE ME 1996
GATE ME 1995
GATE ME 1994
GATE ME 1993
GATE ME 1992
GATE ME 1991
GATE ME 1990
GATE ME 1989
GATE ME 1988
GATE ME 1987
GATE ME
Papers
2024
2023
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987