1
GATE EE 1999
MCQ (Single Correct Answer)
+2
-0.6
Currents $${{\rm I}_1},\,{{\rm I}_2}$$ and $${{\rm I}_3}$$ meet at a junction (node) in a circuit. All currents are marked as entering the node. If $${{\rm I}_1} = - 6\sin \left( {\omega t} \right)$$ $$mA$$ and $${{\rm I}_2} = 8\cos \,\left( {\omega t} \right)\,mA,$$ then $${{\rm I}_3}$$ will be
A
$$10\,\cos \,\left( {\omega t + 36.87} \right)mA.$$
B
$$14\,\cos \,\left( {\omega t + 36.87} \right)mA.$$
C
$$-14\,\sin \,\left( {\omega t + 36.87} \right)mA.$$
D
$$-10\,\cos \,\left( {\omega t + 36.87} \right)mA.$$
2
GATE EE 1999
Subjective
+5
-0
Solve the circuit shown in Fig. using the mesh method of analysis and determine the mesh currents $${{\rm I}_1},\,{{\rm I}_2},$$ and $${{\rm I}_3}$$. Evaluate the power developed in the $$10$$ $$V$$ voltage source. GATE EE 1999 Electric Circuits - Network Elements Question 17 English
3
GATE EE 1999
MCQ (Single Correct Answer)
+2
-0.6
A rectangular voltage pulse of magnitude $$V$$ and duration $$T$$ is applied to a series combination of resistance $$R$$ and capacitance $$C.$$ The maximum voltage developed across the capacitor is
A
$$V\left[ {1 - \exp \left( { - T/RC} \right)} \right]$$
B
$$VT/RC$$
C
$$V$$
D
$$V$$ $$exp$$$${\left( { - T/RC} \right)}$$
4
GATE EE 1999
Subjective
+5
-0
In the given circuit, the capacitor is initially charged to $$12$$ $$V. $$ Find the mathematical expression for the voltage across the capacitor $${{V_C}}$$ after closing the switch at $$t = 0.$$ GATE EE 1999 Electric Circuits - Transient Response Question 16 English
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12