1
GATE EE 1999
MCQ (Single Correct Answer)
+2
-0.6
An industrial consumer has a daily load pattern of $$2000$$ $$kW$$, $$0.8$$ lag for $$12$$ Hrs. and $$1000$$ $$kW$$ $$UPF$$ for $$12$$ Hrs. The load factor is
A
$$0.5$$
B
$$0.75$$
C
$$0.6$$
D
$$2.0$$
2
GATE EE 1999
MCQ (Single Correct Answer)
+1
-0.3
Steady state stability of a power system is the ability of the power system to
A
Maintain voltage at the rated voltage level.
B
Maintain frequency exactly at 50 Hz.
C
Maintain a spinning reserve margin at all times.
D
Maintain synchronism between machines and on external tie lines.
3
GATE EE 1999
Subjective
+5
-0
Determine the magnitudes of the symmetrical components ($${{{\rm I}_{R1}},\,{{\rm I}_{R2}}\,}$$ and $${{{\rm I}_{R0}}}$$) of the currents in a three phase (RYB) three wire system, when a short circuit occurs between R and Y phase wires, the fault current being 100 A.
4
GATE EE 1999
Subjective
+5
-0
Determine the required MVA rating of the circuit breaker CB for the system shown in given figure. Consider the grid as infinite bus. Choose 6 MVA as base. Transformer 3-phase, 33/11 kV, 6 MVA, 0.01+j0.08 p.u. impedance. Load 3-phase 11 kV, 5800 kVA, 0.8 lag, j0.2 p.u. impedance. Impedance of each feeder 9+j 18 $$\Omega $$. GATE EE 1999 Power System Analysis - Symmetrical Components and Symmetrical and Unsymmetrical Faults Question 7 English
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
CBSE
Class 12