1
AP EAPCET 2022 - 4th July Evening Shift
MCQ (Single Correct Answer)
+1
-0

$$\int \frac{1+\tan x \tan (x+a)}{\tan x \tan (x+a)} d x=$$

A
$$\tan a(\log (\sec (x+a))+\log \sec x+C$$
B
$$\cot a(\log |\sin x|-\log |\sin (x+a)|)+C$$
C
$$\tan a\left(\log \left(\frac{\cos x}{\sin (x+a)}\right)\right)+C$$
D
$$\cot a\left(\log \frac{\sin (x+a)}{\cos (x+a)}\right)+C$$
2
AP EAPCET 2022 - 4th July Morning Shift
MCQ (Single Correct Answer)
+1
-0

Assertion (A) If $$I_n=\int \cot ^n x d x$$, then $$I_6+I_4=\frac{-\cot ^5 x}{5}$$

Reason (R) $$\int \cot ^n x d x=\frac{-\cot ^{n-1} x}{n} -\int \cot ^{n-2} x d x$$

A
A is false, R is false
B
A is true, R is true
C
A is true, R is false
D
A is false, R is true
3
AP EAPCET 2022 - 4th July Morning Shift
MCQ (Single Correct Answer)
+1
-0

If $$I_n=\int \tan ^n x d x$$, and $$I_0+I_1+2 I_2+2 I_3+2 I_4 +I_5+I_6=\sum_\limits{k=1}^n \frac{\tan ^k x}{k}$$, then $$n=$$

A
6
B
5
C
4
D
3
4
AP EAPCET 2022 - 4th July Morning Shift
MCQ (Single Correct Answer)
+1
-0

$$\int \frac{e^{\cot x}}{\sin ^2 x}(2 \log \operatorname{cosec} x+\sin 2 x) d x=$$

A
$$-2 e^{\cot x} \log \left(\operatorname{cosec}^2 x\right)+C$$
B
$$-2 e^{\cot x} \log (\operatorname{cosec} x)+C$$
C
$$-2 e^{\cot x} \log (\operatorname{cosec} x+\sin x)+C$$
D
$$-2 e^{\cot x} \log (\operatorname{cosec} x-\cot x)+C$$
AP EAPCET Subjects
EXAM MAP