1
AP EAPCET 2022 - 4th July Morning Shift
MCQ (Single Correct Answer)
+1
-0

If $$f(x)=\sqrt{2-x^2}$$ and $$g(x)=\log (1-x)$$ are two real valued functions, then the domain of the function $$(f+g)(x)$$ is

A
$$[-2,2]$$
B
$$[-2,1)$$
C
$$(-\infty, 1)$$
D
$$(1,2]$$
2
AP EAPCET 2021 - 20th August Morning Shift
MCQ (Single Correct Answer)
+1
-0

$$f(x)=\sin x+\cos x \cdot g(x)=x^2-1$$, then $$g(f(x))$$ is invertible if

A
$$\frac{-\pi}{4} \leq x \leq \frac{\pi}{4}$$
B
$$\frac{-\pi}{2} \leq x \leq 0$$
C
$$\frac{-\pi}{2} \leq x \leq \pi$$
D
$$0 \leq x \leq \frac{\pi}{2}$$
3
AP EAPCET 2021 - 20th August Morning Shift
MCQ (Single Correct Answer)
+1
-0

If $$f: z \rightarrow z$$ is defined by $$f(x)=x^9-11 x^8-2 x^7+22 x^6+x^4 -12 x^3+11 x^2+x-3, \forall x \in z$$, then $$f(11)$$ is equal to

A
7
B
8
C
6
D
9
4
AP EAPCET 2021 - 20th August Morning Shift
MCQ (Single Correct Answer)
+1
-0

Let $$f(x)=x^3$$ and $$g(x)=3^x$$, then the quadratic equation whose roots are solutions of the equation $$(f \circ g)(x)=(g \circ f)(x)$$ (for $$x \neq 0$$) is

A
$$x^2-6 x+3=0$$
B
$$x^2-6 x+9=0$$
C
$$x^2-x+3=0$$
D
$$x^2-3=0$$
AP EAPCET Subjects
EXAM MAP