At $300 \mathrm{~K}, \Delta_r G^{\Theta}$ for the reaction $A_2(g) \rightleftharpoons B_2(g)$ is $-11.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The Equilibrium constant at 300 K is approximately ( $R=8314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ )
Two statements are given below.
Statement I : The reaction $\mathrm{Cr}_2 \mathrm{O}_3+2 \mathrm{Al} \longrightarrow \mathrm{Al}_2 \mathrm{O}_3+2 \mathrm{Cr}$ $\left(\Delta G^{\ominus}=-421 \mathrm{~kJ}\right)$ is thermodynamically feasible.
Statement II : The above reaction occurs at room temperature.
The correct answer is
What is the enthalpy change (in J ) for converting 98 of $\mathrm{H}_2 \mathrm{O}(t)+10^{\circ} \mathrm{C}$ to $\mathrm{H}_2 \mathrm{O}(l)$ at $+20^{\circ} \mathrm{C}$ ?
$$ \left(C_p\left(\mathrm{H}_2 \mathrm{O}(\eta)\right)=75 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}\right) $$
(density of $\mathrm{H}_2 \mathrm{O}(l)=1 \mathrm{gmL}^{-1}{ }^{})$
$A, B, C$ and $D$ are some compounds. The entnalpy of formation of $A(g), B(g), C(g)$ and $D(g)$ is $9.7,-110,81$ and $-393 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively. What is $\Delta_r H$
(in $\mathrm{kJ} \mathrm{mol}^{-1}$ ) for the given reaction ?
$$ A(g)+3 B(g) \longrightarrow C(g)+3 D(g) $$