Observe the following reaction.
$$ A B \mathrm{O}_3(\mathrm{~s}) \xrightarrow{1000 \mathrm{~K}} A \mathrm{O}(\mathrm{~s})+B \mathrm{O}_2(\mathrm{~g}) $$
$\Delta_r H$ for this reaction is $x \mathrm{~kJ} \mathrm{~mol}^{-1}$. What is its $\Delta_r U$ (in $\mathrm{kJ} \mathrm{mol}^{-1}$ ) at the same temperature?
$$ \left(R=8.3 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) $$
At $300 \mathrm{~K}, \Delta_r G^{\Theta}$ for the reaction $A_2(g) \rightleftharpoons B_2(g)$ is $-11.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The Equilibrium constant at 300 K is approximately ( $R=8314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ )
Two statements are given below.
Statement I : The reaction $\mathrm{Cr}_2 \mathrm{O}_3+2 \mathrm{Al} \longrightarrow \mathrm{Al}_2 \mathrm{O}_3+2 \mathrm{Cr}$ $\left(\Delta G^{\ominus}=-421 \mathrm{~kJ}\right)$ is thermodynamically feasible.
Statement II : The above reaction occurs at room temperature.
The correct answer is
What is the enthalpy change (in J ) for converting 98 of $\mathrm{H}_2 \mathrm{O}(t)+10^{\circ} \mathrm{C}$ to $\mathrm{H}_2 \mathrm{O}(l)$ at $+20^{\circ} \mathrm{C}$ ?
$$ \left(C_p\left(\mathrm{H}_2 \mathrm{O}(\eta)\right)=75 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}\right) $$
(density of $\mathrm{H}_2 \mathrm{O}(l)=1 \mathrm{gmL}^{-1}{ }^{})$