1
AP EAPCET 2024 - 22th May Evening Shift
MCQ (Single Correct Answer)
+1
-0

$$ \mathop {\lim }\limits_{x \to \infty }\left[\left(1+\frac{1}{n^3}\right)^{\frac{1}{n^3}}\left(1+\frac{8}{n^3}\right)^{\frac{4}{n^3}}\left(1+\frac{27}{n^3}\right)^{\frac{9}{n^3}} \ldots . .(2)^{\frac{1}{n}}\right] \text { is equaln } $$

A
$\log 2-\frac{1}{2}$
B
$e^{\left(\log 2-\frac{1}{2}\right)}$
C
$e^{\left(\frac{2 \log 2-1}{3}\right)}$
D
$\frac{1}{3}(2 \log 2-1)$
2
AP EAPCET 2024 - 22th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
$\int\limits_{-5 \pi}^{5 \pi}(1-\cos 2 x)^{\frac{5}{2}} d x$ is equal to
A
$\frac{64 \sqrt{2}}{5}$
B
$\frac{128 \sqrt{2}}{5}$
C
$\frac{256 \sqrt{2}}{3}$
D
$\frac{128 \sqrt{2}}{3}$
3
AP EAPCET 2024 - 22th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

$$ \int_0^{\pi / 4} \log (1+\tan x) d x= $$

A
$\pi \log 2+1$
B
$\frac{\pi}{2} \log 2+1$
C
$\frac{\pi}{4} \log 2$
D
$\frac{\pi}{8} \log 2$
4
AP EAPCET 2024 - 22th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

$$\int\limits_\pi ^\pi {}\frac{x \sin x}{1+\cos ^2 x} d x= $$

A
$\frac{3 \pi^2}{4}$
B
$\frac{\pi}{2}+1$
C
$\frac{\pi^2}{4}$
D
$\frac{\pi^2}{2}$
AP EAPCET Subjects
EXAM MAP