1
AP EAPCET 2024 - 20th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

$$ \begin{aligned} &\text { The general solution of the differential equation }\\ &(x+y) y d x+(y-x) x d y=0 \text { is } \end{aligned} $$

A
$x+y \log (c y)=0$
B
$\frac{y}{x}=\log (x y)+c$
C
$x+y \log (c x y)=0$
D
$\frac{y}{x}=\log (c x y)$
2
AP EAPCET 2024 - 20th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
The general solution of the differential equation $\left(y^2+x+1\right) d y=(y+1) d x$ is
A
$x+2+(y+1) \log (y+1)^2=y+c$
B
$x+2+\log (y+1)^2=\frac{y}{y+1}+c$
C
$\frac{x}{y+1}=\log (y+1)^2+y+c$
D
$\frac{x+2}{y+1}+\log (y+1)^2=y+c$
3
AP EAPCET 2024 - 19th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
The difference of the order and degree of the differential equation $\left(\frac{d^2 y}{d x^2}\right)^{-\frac{7}{2}}\left(\frac{d^3 y}{d x^3}\right)^2-\left(\frac{d^2 y}{d x^2}\right)^{-\frac{5}{2}}\left(\frac{d^4 y}{d x^4}\right)=0$ is
A
5
B
3
C
4
D
2
4
AP EAPCET 2024 - 19th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If $x d y+\left(y+y^2 x\right) d x=0$ and $y=1$ at $x=1$, then
A
$y=\frac{x}{1+\log x}$
B
$y=\frac{1+\log x}{x}$
C
$y=x(1+\log x)$
D
$y=\frac{1}{x(1+\log x)}$
AP EAPCET Subjects
EXAM MAP