1
AP EAPCET 2024 - 20th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $x, y$ are two positive integers such that $x+y=20$ and the maximum value of $x^3 y$ is $k$ at $x=\alpha$ and $y=\beta$, then $\frac{k}{\alpha^2 \beta^2}=$
A
$\frac{\alpha}{\beta}+\frac{\beta}{\alpha}$
B
$\frac{\alpha}{\beta}-\frac{\beta}{\alpha}$
C
$\frac{\alpha}{\beta}$
D
$\frac{\alpha+\beta}{\alpha \beta}$
2
AP EAPCET 2024 - 19th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If $y=\left(1+\alpha+\alpha^2+\ldots\right) e^{\eta x}$, where $\alpha$ and $n$ are constants, then the relative error in $y$ is
A
error in $x$
B
percentage error in $x$
C
$n$, (error in $x$ )
D
$n$, (relative error in $x$ )
3
AP EAPCET 2024 - 19th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If the equation of tangent at $(2,3)$ on $y^2=a x^3+b$ is $y=4 x-5$, then the value of $a^2+b^2=$
A
51
B
53
C
58
D
25
4
AP EAPCET 2024 - 19th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If Rolle's theorem is applicable for the function $f(x)=x(x+3) e^{-x / 2}$ on $[3,0]$, then the value of $c$ is
A
3
B
3 and -2
C
-2
D
-1
AP EAPCET Subjects
EXAM MAP