1
AP EAPCET 2024 - 21th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $x \in\left[2 n \pi-\frac{\pi}{4}, 2 n \pi+\frac{3 \pi}{4}\right]$ and $n \in Z$, then $\int \sqrt{1-\sin 2 x} d x=$
A
$-\cos x+\sin x+c$
B
$\cos x+\sin x+c$
C
$-\cos x-\sin x+c$
D
$\cos x-\sin x+c$
2
AP EAPCET 2024 - 21th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
$\int e^x\left(\frac{x+2}{x+4}\right)^2 d x=$
A
$-\frac{x e^x}{(x+4)^2}+c$
B
$-\frac{x e^x}{(x+4)}+c$
C
$\frac{x e^x}{(x+4)}+c$
D
$\frac{2 x e^x}{(x+4)}+c$.
3
AP EAPCET 2024 - 21th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $\int \frac{1}{1-\cos x} d x=\tan \left(\frac{x}{\alpha}+\beta\right)+c$, then one of the values of $\frac{\pi \alpha}{4}-\beta$ is
A
$-\frac{\pi}{2}$
B
$\pi$
C
0
D
$\frac{\pi}{4}$
4
AP EAPCET 2024 - 21th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $n \geq 2$ is a natural number and $0<\theta<\frac{\pi}{2}$, then $\int \frac{\left(\cos ^n \theta-\cos \theta\right)^{1 / n}}{\cos ^{n+1} \theta} \sin \theta d \theta=$
A
$\frac{n}{n-1}\left(\cos ^{(1-n)} \theta-1\right)^2+c$
B
$\frac{n}{(n+1)(1-n)}\left(\cos ^{(1-n)} \theta-1\right)^{1+\frac{1}{n}}+c$
C
$\frac{1}{n-1}\left(\cos ^{(n-1)} \theta-1\right)^2+c$
D
$\frac{n}{1-n^2}\left(1-\cos ^{(1-n)} \theta\right)^{(n+1) / n}+c$
AP EAPCET Subjects
EXAM MAP