1
AP EAPCET 2024 - 21th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $\int \frac{1}{1-\cos x} d x=\tan \left(\frac{x}{\alpha}+\beta\right)+c$, then one of the values of $\frac{\pi \alpha}{4}-\beta$ is
A
$-\frac{\pi}{2}$
B
$\pi$
C
0
D
$\frac{\pi}{4}$
2
AP EAPCET 2024 - 21th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $n \geq 2$ is a natural number and $0<\theta<\frac{\pi}{2}$, then $\int \frac{\left(\cos ^n \theta-\cos \theta\right)^{1 / n}}{\cos ^{n+1} \theta} \sin \theta d \theta=$
A
$\frac{n}{n-1}\left(\cos ^{(1-n)} \theta-1\right)^2+c$
B
$\frac{n}{(n+1)(1-n)}\left(\cos ^{(1-n)} \theta-1\right)^{1+\frac{1}{n}}+c$
C
$\frac{1}{n-1}\left(\cos ^{(n-1)} \theta-1\right)^2+c$
D
$\frac{n}{1-n^2}\left(1-\cos ^{(1-n)} \theta\right)^{(n+1) / n}+c$
3
AP EAPCET 2024 - 20th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If $\frac{x^2+3}{x^4+2 x^2+9}=\frac{A x+B}{x^2+a x+b}+\frac{C x+D}{x^2+c x+b}$, then $a A+b B+c C+D=$
A
1
B
0
C
-1
D
2
4
AP EAPCET 2024 - 20th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
$\int \frac{d x}{x\left(x^4+1\right)}=$
A
$\log \left(\frac{x}{x^4+1}\right)+c$
B
$\frac{3}{4} \log \left(x^4+1\right)+c$
C
$\frac{1}{3} \log \left(\frac{x^3}{x^4+1}\right)+c$
D
$\frac{1}{4} \log \left(\frac{x^4}{x^4+1}\right)+c$
AP EAPCET Subjects
EXAM MAP