1
GATE CE 2007
+2
-0.6
The inverse of $$2 \times 2$$ matrix $$\left[ {\matrix{ 1 & 2 \cr 5 & 7 \cr } } \right]$$ is
A
$${1 \over 3}\left[ {\matrix{ { - 7} & 2 \cr 5 & { - 1} \cr } } \right]$$
B
$${1 \over 3}\left[ {\matrix{ { 7} & 2 \cr 5 & { 1} \cr } } \right]$$
C
$${1 \over 3}\left[ {\matrix{ { 7} &- 2 \cr - 5 & { 1} \cr } } \right]$$
D
$${1 \over 3}\left[ {\matrix{ { - 7} & - 2 \cr - 5 & { - 1} \cr } } \right]$$
2
GATE CE 2007
+2
-0.6
The minimum and maximum eigen values of matrix $$\left[ {\matrix{ 1 & 1 & 3 \cr 1 & 5 & 1 \cr 3 & 1 & 1 \cr } } \right]$$ are $$-2$$ and $$6$$ respectively. What is the other eigen value?
A
$$5$$
B
$$3$$
C
$$1$$
D
$$-1$$
3
GATE CE 2007
+2
-0.6
For what values of $$\alpha$$ and $$\beta$$ the following simultaneous equations have an infinite number of solutions $$x+y+z=5,$$$$$x+3y+3z=9,$$$ $$x + 2y + \alpha z = \beta$$\$
A
$$2,7$$
B
$$3,8$$
C
$$8,3$$
D
$$7,2$$
4
GATE CE 2006
+2
-0.6
For a given matrix $$A = \left[ {\matrix{ 2 & { - 2} & 3 \cr { - 2} & { - 1} & 6 \cr 1 & 2 & 0 \cr } } \right],$$ one of the eigen value is $$3.$$ The other two eigen values are
A
$$2,-5$$
B
$$3,-5$$
C
$$2,5$$
D
$$3,5$$
GATE CE Subjects
Engineering Mechanics
Construction Material and Management
Geotechnical Engineering
Fluid Mechanics and Hydraulic Machines
Geomatics Engineering Or Surveying
Environmental Engineering
Transportation Engineering
General Aptitude
EXAM MAP
Medical
NEET